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ABSTRACT

Contrastive learning is a powerful framework for learning self-supervised represen-
tations that generalize well to downstream supervised tasks. We show that multiple
existing contrastive learning methods can be reinterpreted as learning kernel func-
tions that approximate a fixed positive-pair kernel. We then prove that a simple
representation obtained by combining this kernel with PCA provably minimizes
the worst-case approximation error of linear predictors, under a straightforward
assumption that positive pairs have similar labels. Our analysis is based on a de-
composition of the target function in terms of the eigenfunctions of a positive-pair
Markov chain, and a surprising equivalence between these eigenfunctions and
the output of Kernel PCA. We give generalization bounds for downstream linear
prediction using our Kernel PCA representation, and show empirically on a set of
synthetic tasks that applying Kernel PCA to contrastive learning models can indeed
approximately recover the Markov chain eigenfunctions, although the accuracy
depends on the kernel parameterization as well as on the augmentation strength.

1 INTRODUCTION

When using a contrastive learning method such as SimCLR (Chen et al., 2020a) for representation
learning, the first step is to specify the distribution of original examples z ∼ p(Z) within some space
Z along with a sampler of augmented views p(A|Z = z) over a potentially different space A. 1 For
example, p(Z) might represent a dataset of natural images, and p(A|Z) a random transformation that
applies random scaling and color shifts. Contrastive learning then consists of finding a parameterized
mapping (such as a neural network) which maps multiple views of the same image (e.g. draws from
a1, a2 ∼ p(A|Z = z) for a fixed z) close together, and unrelated views far apart. This mapping can
then be used to define a representation which is useful for downstream supervised learning.

The success of these representations have led to a variety of theoretical analyses of contrastive
learning, including analyses based on conditional independence within latent classes (Saunshi et al.,
2019), alignment of hyperspherical embeddings (Wang & Isola, 2020), conditional independence
structure with landmark embeddings (Tosh et al., 2021), and spectral analysis of an augmentation
graph (HaoChen et al., 2021). Each of these analyses is based on a single choice of contrastive learning
objective. In this work, we go further by integrating multiple popular contrastive learning methods
into a single framework, and showing that it can be used to build minimax-optimal representations
under a straightforward assumption about similarity of labels between positive pairs.

Common wisdom for choosing the augmentation distribution p(A|Z) is that it should remove irrele-
vant information from Z while preserving information necessary to predict the eventual downstream
label Y ; for instance, augmentations might be chosen to be random crops or color shifts that affect
the semantic content of an image as little as possible (Chen et al., 2020a). The goal of representation
learning is then to find a representation with which we can form good estimates of Y using only a few
labeled examples. In particular, we focus on approximating a target function g : A → Rn for which
g(a) represents the “best guess” of Y based on a. For regression tasks, we might be interested in a

1We focus on finite but arbitrarily large Z and A, e.g. the set of 8-bit 32x32 images, and allow Z ̸= A.

1



Published as a conference paper at ICLR 2023

target function of the form g(a) = E[Y |A = a]. For classification tasks, if Y is represented as a one-
hot vector, we might be interested in estimating the probability of each class, again taking the form
g(a) = E[Y |A = a], or the most likely label, taking the form g(a) = argmaxy p(Y = y|A = a).
In either case, we are interested in constructing a representation for which g can be estimated well
using only a small number of labeled augmentations (ai, yi).2 Since we usually do not have access to
the downstream supervised learning task when learning our representation, our goal is to identify a
representation that enables us to approximate many different “reasonable” choices of g. Specifically,
we focus on finding a single representation which allows us to approximate every target function with
a small positive-pair discrepancy, i.e. every g satisfying the following assumption:
Assumption 1.1 (Approximate View-Invariance). Each target function g : A → R satisfies

Ep+(a1,a2)

[(
g(a1)− g(a2)

)2] ≤ ε,

for some fixed ε ∈ [0,∞), where p+(a1, a2) =
∑

z p(a1|z)p(a2|z)p(z).

This is a fairly weak assumption, because to the extent that the distribution of augmentations
preserves information about some downstream label, our best estimate of that label should not
depend much on exactly which augmentation is sampled: it should be approximately invariant
to the choice of a different augmented view of the same example. More precisely, as long as
the label Y is independent of the augmentation A conditioned on the original example Z (i.e.
assuming augmentations are chosen without using the label, as is typically the case), we must have
E
[
(g(A1)− g(A2))

2
]
≤ 2E

[
(g(A)− Y )2

]
(see Appendix A). For simplicity, we work with scalar

g : A → R and Y ∈ R; vector-valued Y can be handled by learning a sequence of scalar functions.

Our first contribution is to unify a number of previous analyses and existing techniques, drawing
connections between contrastive learning, kernel decomposition, Markov chains, and Assumption
1.1. We start by showing that minimizing existing contrastive losses is equivalent to building an
approximation of a particular positive-pair kernel, from which a finite-dimensional representation
can be extracted using Kernel PCA (Schölkopf et al., 1997). We next discuss what properties a
representation must have to achieve low approximation error for functions satisfying Assumption 1.1,
and show that the eigenfunctions of a Markov chain over positive pairs allow us to re-express this
assumption in a form that makes those properties explicit. We then prove that, surprisingly, building
a Kernel PCA representation using the positive-pair kernel is exactly equivalent to identifying the
eigenfunctions of this Markov chain, ensuring this representation has the desired properties.

Our main theoretical result is that contrastive learning methods can be used to find a minimax-
optimal representation for linear predictors under Assumption 1.1. Specifically, for a fixed dimension,
we show that taking the eigenfunctions with the largest eigenvalues yields a basis for the linear
subspace of functions that minimizes the worst case quadratic approximation error across the set of
functions satisfying Assumption 1.1, and further give generalization bounds for the performance of
this representation for downstream supervised learning.

We conclude by studying the behavior of contrastive learning models on two synthetic tasks for
which the exact positive-pair kernel is known, and investigating the extent to which the basis of
eigenfunctions can be extracted from trained models. As predicted by our theory, we find that the
same eigenfunctions can be recovered from multiple model parameterizations and losses, although
the accuracy depends on both kernel parameterization expressiveness and augmentation strength.

2 CONTRASTIVE LEARNING IS SECRETLY KERNEL LEARNING

Standard contrastive learning approaches can generally be decomposed into two pieces: a param-
eterized model that takes two augmented views and assigns them a real-valued similarity, and a
contrastive loss function that encourages the model to assign higher similarity to positive pairs
than negative pairs. In particular, the InfoNCE / NT-XEnt objective proposed by Van den Oord et al.
(2018) and Chen et al. (2020a) and used with the SimCLR architecture, the NT-Logistic objective also
considered by Chen et al. (2020a) and theoretically analyzed by Tosh et al. (2021), and the Spectral
Contrastive Loss introduced by HaoChen et al. (2021) all have this structure.

2If we have a dataset of labeled un-augmented examples (zi, yi), we can build a dataset of labeled augmenta-
tions by sampling one or more augmentations of each example in our original dataset.
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Figure 1: The positive-pair ker-
nel K+ assigns high similarity to
likely positive pairs. Contrastive
learning methods learn parame-
terized kernels K̂θ which assign
high similarity to nearby points
in a learned embedding space.

NT-XEnt
(Chen et al.,

2020a; Van den
Oord et al., 2018)

Loss E

[
− log

K̂θ(a
+
1 ,a+

2 )

K̂θ(a
+
1 ,a+

2 )+
∑

a
−
i

K̂θ(a
+
1 ,a−

i )

]
Kernel K̂θ(a1, a2) = exp(hθ(a1)

⊤hθ(a2)/τ)

Minimum K̂∗(a1, a2) = p+(a1,a2)
p(a1)p(a2)

· C[a1]

NT-Logistic
(Chen et al.,

2020a; Tosh et al.,
2021)

Loss
E
[
− log σ(log K̂θ(a

+
1 , a

+
2 ))
]

+ E
[
− log σ(− log K̂θ(a

−
1 , a

−
2 ))
]

Kernel K̂θ(a1, a2) = exp(hθ(a1)
⊤hθ(a2)/τ)

Minimum K̂∗(a1, a2) = p+(a1,a2)
p(a1)p(a2)

Spectral
(HaoChen et al.,

2021)

Loss E
[
−2K̂θ(a

+
1 , a

+
2 )
]
+ E

[
(K̂θ(a

−
1 , a

−
2 ))

2
]

Kernel K̂θ(a1, a2) = hθ(a1)
⊤hθ(a2)

Minimum K̂∗(a1, a2) = p+(a1,a2)
p(a1)p(a2)

Table 1: Existing contrastive learning objectives, reinterpreted as
learning parameterized approximations of K+. “Minimum” de-
notes the population minimum of the loss over all kernel functions
(not necessarily representable using the shown parameterization).
C[a1] is a equivalence-class-dependent proportionality constant,
with C[a1] = C[a2] whenever p+(a1, a2) > 0. See Appendix B
for derivations and discussion of other related objectives.

The similarity between the two augmented views is commonly taken to be the dot product of outputs
of a neural network, e.g. as hθ(a1)

⊤hθ(a2). However, a surprising pattern emerges if we instead
interpret the exponentiated dot product exp(hθ(a1)

⊤hθ(a2)/τ) as the similarity for the NT-XEnt
and NT-Logistic objectives, treating the exponential and temperature term τ as part of the model
instead of part of the objective. As shown in Table 1, the three losses now share the same population
minimum: the probability ratio p+(a1, a2)/p(a1)p(a2).

Intriguingly, the expressions hθ(a1)
⊤hθ(a2) and exp(hθ(a1)

⊤hθ(a2)/τ) both satisfy the definition
of a Mercer kernel (also called a positive-definite kernel): each implicitly computes the inner product
between feature vectors ⟨ϕ(a1), ϕ(a2)⟩ under some transformation ϕ : A → Rd (where d may be
infinite). Furthermore, the probability ratio p+(a1, a2)/p(a1)p(a2) can be interpreted as a Mercer
kernel as well:
Definition 2.1. The positive-pair kernel associated with distributions p(z) and p(a|z) is the ratio

K+(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
= ⟨ϕ+(a1), ϕ+(a2)⟩ , (1)

where p+(a1, a2) =
∑

z p(a1|z)p(a2|z)p(z), and ϕ+ : A → R|Z| is the transformation

ϕ+(a) =
[
p(a|z1)

√
p(z1)

p(a)

p(a|z2)
√

p(z2)

p(a) · · · p(a|z|Z|)
√

p(z|Z|)

p(a)

]⊤
. (2)

Here, the magnitude of the dot product between vectors ϕ+(a1) and ϕ+(a2) reflects the relative
likelihood of data points a1 and a2 being drawn from a positive pair v.s. a negative pair. In particular,
if a1 and a2 have zero probability of being a positive pair, ϕ+(a1) and ϕ+(a2) are orthogonal.

As shown in Figure 1, we can thus reinterpret the three contrastive learning methods in Table 1 as
kernel learning methods, in that they produce parameterized positive-definite kernel functions which
approximate this positive-pair kernel. By investigating properties of this kernel, we can thus hope to
build a better understanding of the behavior of contrastive learning.

3 KERNEL PRINCIPAL COMPONENTS ARE MARKOV CHAIN EIGENFUNCTIONS

We start by investigating the geometric structure of the data under K+, and how we could use Kernel
PCA to build a natural representation based on this structure. We next ask what properties we would
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(c) k = 50 (weaker aug.)
Figure 2: Samples from the positive-pair Markov chain for MNIST k-pixel-subsampling augmenta-
tions at three strengths (k = 10, 20, 50). At each step we condition on an augmentation at (middle
row) to sample an uncorrupted example zt (top row), then sample at+1 from zt so that (at, at+1)
is a positive pair. Below, we plot the five slowest-varying eigenfunctions f1, . . . , f5 at each step of
the chain, labeled with their eigenvalues λ1, . . . , λ5. Weaker augmentations lead to slower mixing,
smoother eigenfunctions, and eigenvalues closer to 1.

want this representation to have, and use a Markov chain over positive pairs to decompose those
properties in a convenient form. We then show that, surprisingly, the representation derived from K+

exactly corresponds to the Markov chain decomposition and thus has precisely the desired properties.

3.1 SUMMARIZING K+ WITH KERNEL PRINCIPAL COMPONENTS ANALYSIS

Recall that for any a1 and a2, we have K+(a1, a2) = ⟨ϕ+(a1), ϕ+(a2)⟩ where ϕ+ is defined
in Equation 2.1. Unfortunately, the "features" ϕ+(a) ∈ R|Z| are very high dimensional, being
potentially as large as the cardinality of |Z|. A natural approach for building a lower-dimensional
representation is to use principal components analysis (PCA): construct the (uncentered) covariance
matrix Σ = Ep(a)[ϕ+(a)ϕ+(a)

⊤] ∈ R|Z|×|Z| and then diagonalize it as Σ = UDU⊤ to determine
the principal components {(u1, σ

2
1), (u2, σ

2
2), . . . } of our transformed data distribution ϕ+(A), i.e.

the directions capturing the maximum variance of ϕ+(A). We can then project the transformed points
ϕ+(a) onto these directions to construct a sequence of “projection functions” hi(a) := u⊤i ϕ(a).

Conveniently, it is possible to estimate these projection functions given access only to the kernel
function K+(a1, a2) = ⟨ϕ+(a1), ϕ+(a2)⟩, by using Kernel PCA (Schölkopf et al., 1997). Kernel
PCA bypasses the need to estimate the covariance in feature space, directly producing the set of
principal component projection functions h1, h2, . . . and corresponding eigenvalues σ2

1 , σ
2
2 , . . . , such

that hi(a) measures the projection of ϕ+(a) onto the ith eigenvector of the covariance matrix, and
σ2
i measures the variance along that direction.

The sequence of principal component projection functions gives us a view into the geometry of our
data when mapped through ϕ+(A). It is thus natural to construct a d-dimensional representation
r : A → Rd by taking the first d such functions r(a) = [h1(a), h2(a), . . . , hd(a)], and then use this
for downstream learning, as is done in (kernel) principal component regression (Rosipal et al., 2001;
Wibowo & Yamamoto, 2012). In practice, we can also substitute our learned kernel K̂θ in place of
K+. Note that we are free to choose d to trade off between the complexity of the representation and
the amount of variance of ϕ+(A) that we can capture.

3.2 DECOMPOSING INVARIANCE WITH THE POSITIVE-PAIR MARKOV CHAIN

What properties might we want this representation to have? If we wish to estimate functions g
satisfying Assumption 1.1, for which Ep+(a1,a2)

[
(g(a1) − g(a2))

2
]

is small, we might hope that
Ep+(a1,a2)

[
∥r(a1) − r(a2)∥22

]
is small. But this is not sufficient to ensure we can estimate g with

high accuracy; as an example, a constant representation is unlikely to work well. Good representation
learning approaches must ensure that the learned representations are also expressive enough to
approximate g (for instance by using negative samples or by directly encouraging diversity as in
VICReg Bardes et al. (2021)), but it is not immediately obvious what it means to be “expressive
enough” if all we know about g is that it satisfies Assumption 1.1.

4



Published as a conference paper at ICLR 2023

We can build a better understanding of the quality of a representation by expanding g in terms of
a basis in which Ep+(a1,a2)

[
(g(a1) − g(a2))

2
]

admits a simpler form. In particular, a convenient
decomposition arises from considering the following Markov chain (shown in Figure 2): starting
with an example at, sample the next example at+1 proportional to how likely (at, at+1) would be
a positive pair, i.e. according to p+(at+1|at) =

∑
z p(at+1|z)p(z|at). Note that, to the extent that

some function g satisfies Assumption 1.1, we would also expect the value of g to change slowly
along trajectories of this chain, i.e. that g(a1) ≈ g(a2) ≈ g(a3) ≈ · · · , and thus that in general
g(at) ≈ Ep+(at+1|at)

[
g(at+1)

]
. This motivates solving for the eigenfunctions of the Markov chain,

which are functions that satisfy Ep+(at+1|at)

[
fi(at+1)

]
= λifi(at) for some λ ∈ [0, 1].

As shown by Levin & Peres (2017, Chapter 12), the fi form an orthonormal basis3 for the set
of all functions A → R under the inner product ⟨f, g⟩ = Ep(a)[f(a)g(a)], in the sense that
Ep(a)[fi(a)fi(a)] = 1 and Ep(a)[fi(a)fj(a)] = 0 for i ̸= j. Then, for any g : A → R, if we
let ci = Ep(a)[fi(a)g(a)], we must have g(a) =

∑
i cifi(a) and Ep(a)[g(a)

2] =
∑

i c
2
i . Further-

more, this particular choice of orthonormal basis has the following appealing property:
Proposition 3.1. If g : A → R and ci = E[fi(a)g(a)], then

Ep+(a1,a2)

[(
g(a1)− g(a2)

)2]
=
∑
i

(2− 2λi)c
2
i . (3)

See Appendix C for a proof, along with a derivation of the orthonormality of the basis. One particular
consequence of this fact is that the eigenfunctions with eigenvalues closest to 1 are also the most
view-invariant. Specifically, setting g = fi reveals that

Ep+(a1,a2)

[(
fi(a1)− fi(a2)

)2]
= 2− 2λi. (4)

More generally, if g satisfies Assumption 1.1, Equation 3 implies that 2
∑

i(1 − λi)c
2
i ≤ ε, and

thus g must have coefficients ci concentrated on eigenfunctions with λi close to 1. Indeed, if
ε = 0 (i.e. if g is perfectly invariant to augmentations) then the only eigenfunctions with nonzero
weights must be those with λi = 1. If we want to approximate g using a small finite-dimensional
representation, we should then prefer representations that allow us to estimate any linear combination
of the eigenfunctions for which λi is close to 1.

3.3 KERNEL PCA RECOVERS THE BASIS OF POSITIVE-PAIR EIGENFUNCTIONS

Surprisingly, it turns out that the representation built from kernel PCA in Section 3.1 has precisely
the desired property. In fact, performing kernel PCA with K+ (over the full population) is exactly
equivalent to identifying the eigenfunctions of the Markov transition matrix P .
Theorem 3.2. The output (h1, σ

2
1), (h2, σ

2
2), . . . of population-level Kernel PCA under K+ and

the orthonormal basis of eigenfunctions fi of P with eigenvalues λi satisfy σ2
i = λi and hi(a) =

σifi(a) = λ
1/2
i fi(a) for all i and all a ∈ A (up to reordering and multiplicity of eigenspaces4).

See Appendix C for a proof. This theorem reveals a deep connection between the (co)variance of
the dataset under our kernel K+ and the view-invariance captured by Assumption 1.1. In particular,
if we build a representation r(a) = [h1(a), h2(a), . . . , hd(a)] using the first d principal component
projection functions, this representation will directly capture the d eigenfunctions with eigenvalues
closest to 1, and allow us to approximate any linear combination of those eigenfunctions using a
linear predictor.

4 EIGENFUNCTION REPRESENTATIONS ARE MINIMAX OPTIMAL

We now give a more precise analysis of the quality of this representation for downstream supervised
fine-tuning. We focus on the class of linear predictors on top of a k-dimensional representation

3As long as we scale them appropriately and choose orthogonal functions within each eigenspace.
4In other words, when some eigenvalues have multiplicity > 1, the hi and fi are not uniquely determined,

but we are free to choose them such that they satisfy this relationship.

5



Published as a conference paper at ICLR 2023
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(e) Truncation Error
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Figure 3: (a) We can expand an arbitrary function g : A → R as a linear combination of eigen-
functions, here using the toy problem described in Section 6 and Figure 4. (b) Taking partial sums
using only the first d eigenfunctions yields a series of increasingly good approximations of g. (c)
The positive-pair discrepancy of g is a linear combination of the eigenvalues of the corresponding
eigenfunctions. (d) Under Assumption 1.1, we can bound each coefficient based on its contribution
to the total positive-pair discrepancy. (e) This can be used to bound the error of approximating g with
a small subset of eigenfunctions. By Theorem 4.1, this ordered basis admits the smallest such bound.

r : A → Rd, e.g. we will approximate g with a parameterized function ĝβ(a) = β⊤r(a). It turns
out that the representation consisting of the d eigenfunctions {f1, . . . , fd} with largest eigenvalues
{λ1, . . . , λd} is the best choice under two simultaneous criteria.
Theorem 4.1. Let Fr = {a 7→ β⊤r(a) : β ∈ Rd} be the subspace of linear predictors
from representation r, and Sε be the set of functions satisfying Assumption 1.1. Let rd∗(a) =
[f1(a), f2(a), . . . , fd(a)] be the representation consisting of the d eigenfunctions of the positive
pair Markov chain with the largest eigenvalues. Then Frd∗

maximizes the view invariance of the
least-invariant unit-norm predictor in Frd∗

:

Frd∗
= argmin

dim(F)=d

max
ĝ∈F, E[ĝ(a)2]=1

Ep+

[(
ĝ(a1)− ĝ(a2)

)2]
. (5)

Simultaneously, Frd∗
minimizes the (quadratic) approximation error for the worst-case target function

satisfying Assumption 1.1 for any fixed ε:
Frd∗

= argmin
dim(F)=d

max
g∈Sε

min
ĝ∈F

Ep(a)

[(
g(a)− ĝ(a)

)2]
. (6)

Equation 5 states that the function class Frd∗
has an implicit regularization effect: it contains the

functions that change as little as possible over positive pairs, relative to their norm. Equation 6
reveals that this function class is also the optimal choice for least-squares approximation of a function
satisfying Assumption 1.1. Together, these findings suggest that this representation should perform
well as long as Assumption 1.1 holds.

We make this intuition precise as follows. Consider the loss function ℓ(ŷ, y) := |ŷ − y|, and the
associated risk R(g) = E [ℓ(g(A), Y )] of a predictor g : A → R. Let g∗ ∈ argminR(g) be the
lowest-risk predictor over the set of functions A → R, with risk R∗ = R(g∗), and assume it
satisfies Assumption 1.1. Expand g∗ as a linear combination of the basis of eigenfunctions (fi)

|A|
i=1 as

g∗ =
∑|A|

i=1 β
∗
i fi, and define the vector β∗ := (β∗1 , . . . , β

∗
d) by taking the first d coefficients.

Proposition 4.2. Let (Ai, Yi)
n
i=1 be i.i.d. samples, choose R ≥ 0, and consider the constrained

empirical risk minimizer β̂R ∈ argmin∥β∥2≤R n−1
∑n

i=1|⟨β, r∗d(Ai)⟩ − Yi|. Then the expected
excess risk of β̂R is bounded by:

E
[
E(β̂R)

]
≤ 2dR√

n
+

√
d(∥β∗∥2 −R)+ +

√
ε

2(1− λd+1)

where E(β) := R(β)−R∗ is the excess risk and (x)+ := max{x, 0}.
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Note that ∥β∗∥22 =
∑d

i=1 β
∗2
i ≤

∑|A|
i=1 β

∗2
i = E[g∗(a)2], so if we choose R2 ≥ E[g∗(a)2] then the

second term vanishes. The third term bounds the error incurred by using only the first d eigenfunctions,
since β∗2i ≤ ε

2(1−λi)
by Equation 3, and motivates choosing d to be large enough that λd+1 is small.

See Appendix D for proofs of Theorem 4.1 and Proposition 4.2.

5 RELATED WORK

Our work is closely connected to the spectral graph theory analysis by HaoChen et al. (2021), which
focuses on the eigenvectors of the normalized adjacency matrix of an augmentation graph, introduces
the spectral contrastive loss, and shows that its optimum recovers the top eigenvectors up to an
invertible transformation. We go further by arguing that the Spectral Contrastive, NT-XEnt, and NT-
Logistic losses can all be viewed as approximating K+, and showing that the resulting eigenfunctions
are minimax-optimal for reconstructing target functions satisfying Assumption 1.1. (Indeed, the
eigenvectors analyzed by HaoChen et al. are equal to our eigenfunctions scaled by p(a)1/2; see
Appendix C.3.) Our work is also related to the analysis of non-linear CCA given by Lee et al. (2020),
which can be seen as an asymmetric variant of Kernel PCA with K+. We note that Assumption 1.1
can be recast in terms of the Laplacian matrix of the augmentation graph; similar assumptions have
been used before for label propagation (Bengio et al., 2006) and Laplacian filtering (Zhou & Srebro,
2011). This assumption is also used as a “consistency regularizer” for semi-supervised learning
(Sajjadi et al., 2016; Laine & Aila, 2016) and self-supervised learning (Bardes et al., 2021).

There have been a number of other attempts to unify different contrastive learning techniques in a
single theoretical framework. Balestriero & LeCun (2022) describe a unification using the framework
of spectral embedding methods, and draw connections between SimCLR and Kernel ISOMAP. Tian
(2022) provides a game-theoretic unification, and shows that contrastive losses are related to PCA in
the input space for the special case of deep linear networks.

Techniques such as SpIN (Pfau et al., 2018) and NeuralEF (Deng et al., 2022) have been proposed
to learn spectral decompositions of kernels. When applied to the positive-pair kernel K+, it is
possible to rewrite their objective in terms of paired views instead of requiring kernel evaluations,
and the resulting decomposition is exactly the orthogonal basis of Markov chain eigenfunctions fi.
Interestingly, modifying Neural EF in this manner yields an algorithm that closely resembles the
Variance-Invariance-Covariance regularization (VICReg) self-supervised learning method proposed
by Bardes et al. (2021), as we discuss in Appendix E.2. See also Appendix B.4 for discussion of
other connections between the positive-pair kernel and objectives considered by prior work.

6 EXPERIMENTS

It remains to determine how well learned approximations of the positive-pair kernel succeed at
recovering the eigenfunction basis in practice. We explore this question on two synthetic testbed
tasks for which the true kernel K+ can be computed in closed form.

Datasets. Our first dataset is a simple “overlapping regions” toy problem, visualized in Figure 4.
We define A to be a set of grid points, and Z to be a set of rectangular regions over the grid (shaded).
We set p(Z) to be a uniform distribution over regions, and p(A|Z = z) to choose one grid point
contained in z at random. For a more natural distribution of data, our second dataset is derived from
MNIST (LeCun et al., 2010), but with a carefully-chosen augmentation process so that computing
K+ is tractable. Specifically, we choose p(Z) to uniformly select from a small subset Z of MNIST
digits, and define p(A|Z = z) by first transforming z using one of a finite set of possible rotations
and translations, then sampling a subset of k pixels with replacement from the transformed copy. The
finite set of allowed transformations and the tractable probability mass function of the multinomial
distribution together enable us to compute K+ by summing over all possible z ∈ Z . (Samples from
this distribution for different values of k are shown in Figure 2.)

Model training and eigenfunction estimation. We train contrastive learning models for each of
these datasets using a variety of kernel parameterizations and loss functions. For kernel parame-
terizations, we consider both linear approximate kernels K̂θ(a1, a2) = hθ(a1)

⊤hθ(a2), where hθ

may be normalized to have constant norm ∥hθ(a)∥2 = c or be left unconstrained, and hypersphere-
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(d)

(c)(a) (b)

0 = 1 = 1.00 2 = 3 = 0.96 4 = 5 = 6 = 0.96 7 = 0.95 8 = 9 = 0.85 10 = 0.82 11 = 0.81 12 = 13 = 0.68

0 = 0.96 1 = 0.93 2 = 0.92 3 = 0.92 4 = 0.91 5 = 0.91 6 = 0.88 7 = 0.83 8 = 0.82 9 = 0.77 10 = 0.74 11 = 0.71 12 = 0.70 13 = 0.61

Figure 4: (a) Toy “overlapping regions” contrastive learning task, where A is the set of cross markers,
and Z is the set of shaded blue rectangles. (b) 2D embedding space learned by minimizing a
contrastive loss with a rational quadratic kernel head K̂θ. (c) The first 14 eigenfunctions of the true
positive-pair Markov chain. (d) The first 14 principal component projection functions for the learned
kernel K̂θ extracted using Kernel PCA. Diagonal colored lines denote alignment between the learned
functions and the true eigenspaces, which increases as K̂ approaches K+. (e) Evaluations of the the
learned projection functions over the entire latent embedding space using Kernel PCA, showing that
it can embed points not seen during training.

based approximate kernels K̂θ(a1, a2) = exp(hθ(a1)
⊤hθ(a2)/τ + b), where ∥hθ(a)∥2 = 1 and

b ∈ R, τ ∈ R+ are learned. We also explore either replacing b with a learned per-example adjustment
sθ(a1) + sθ(a2) or fixing it to zero. For losses, we investigate the XEnt, Logistic, and Spectral losses
shown in Table 1, and explore using a downweighted Logistic loss as a regularizer for the XEnt loss
to eliminate the underspecified proportionality constant in minimizer of the XEnt loss.

For each approximate kernel and also for the true positive-pair kernel K+, we apply Kernel PCA to
extract the eigenfunctions f̂i and their associated eigenvalues λ̂i. We use full-population Kernel PCA
for the overlapping regions task, and combine the Nyström method (Williams & Seeger, 2000) with a
large random subset of augmented examples to approximate Kernel PCA for the MNIST task. We
additionally investigate training a Neural EF model (Deng et al., 2022) to directly decompose the
positive pair kernel into principal components using a single model instead of separately training a
contrastive learning model, as mentioned in Section 5. We modify the Neural EF objective slightly to
make it use positive pair samples instead of kernel evaluations and to increase numerical stability.
See Appendix E for additional discussion of the eigenfunction approximation process.

We then measure the alignment of each eigenfunction f̂i of our learned models with the corresponding
eigenfunction fj of K+ using the formula Ep(a)[f̂i(a)fj(a)]

2, where the square is taken since
eigenfunctions are invariant to changes in sign. We also estimate the positive-pair discrepancy
Ep+

[
(f̂i(a1)− f̂i(a2))

2
]

for each approximate eigenfunction.

Results. We summarize a set of qualitative observations which are relevant to our theoretical claims
in the previous sections. A representative subset of the results are also visualized in Figure 5. See
Appendix F.1 for additional experimental results and a more thorough discussion of our findings.

Linear kernels, hypersphere kernels, and NeuralEF can all produce good approximations of the basis
of eigenfunctions with sufficient tuning, despite their different parameterizations. The relationship
between approximate eigenvalues and positive-pair discrepancies also closely matches the prediction
from Equation 4. Both of these relationships emerge during training and do not hold for a randomly
initialized model. Additionally, for a fixed kernel parameterization, multiple losses can work well. In
particular, we were able to train good hypersphere-based models on the toy regions task using either
the XEnt loss or the spectral loss, although the latter required additional tuning to stabilize learning.

Constraints on the kernel approximation degrade eigenfunction and eigenvalue estimates. We find that
introducing constraints on the output head tends to produce worse alignment between eigenfunctions,
and leads to eigenvalues that deviate from the expected relationship in Equation 4. Such constraints
include reducing the dimension of the output layer, rescaling the output layer for a linear kernel
parameterization to have a fixed L2 norm (as proposed by HaoChen et al. (2021)), or fixing b to zero
for a hypersphere kernel parameterization (as is done implicitly by Chen et al. (2020a)).
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Figure 5: Eigenfunction and eigenvalue estimation accuracy for a selection of models on our
two synthetic tasks. Top row: Alignment between the eigenfunctions of K+ and those of each
kernel approximation, with perfect alignment shown as a block diagonal matrix. Bottom row:
Relationship between learned kernel eigenvalue λ and the corresponding positive-pair discrepancy
Ep+

[
(f(a1)− f(a2))

2
]
, with the relationship predicted by Equation 4 shown with a dashed line.

Weaker augmentations make eigenfunction estimation more difficult. Finally, for the MNIST task, we
find that as we decrease the augmentation strength (by increasing the number of kept pixels k), the
number of successfully-recovered eigenfunctions also decreases. This may be partially due to Kernel
PCA having worse statistical behavior when there are smaller gaps between eigenvalues (specifically,
more eigenvalues close to 1), since we observe this trend even when applying Kernel PCA to the
exact closed-form K+. However, we also observe that the relationship predicted by Equation 4 starts
to break down as well for some kernel approximations under weak augmentation strengths.

7 DISCUSSION

We have shown that existing contrastive objectives approximate the kernel K+, and that Kernel
PCA yields an optimal representation for linear prediction under Assumption 1.1. We have further
demonstrated on two synthetic tasks that running contrastive learning followed by Kernel PCA
can yield good approximate representations across multiple parameterizations and losses, although
constrained parameterizations and weaker augmentations both reduce approximation quality.

Our analysis (in particular Theorem 4.1) assumes that the distribution of views p(A) is shared
between the contrastive learning task and the downstream learning task. In practice, the distribution
of underlying examples p(Z) and the augmentation distribution p(A|Z) often change when fine-
tuning a self-supervised pretrained model. An interesting future research direction would be to
quantify how the minimax optimality of our representation is affected under such a distribution
shift. Our analysis also focuses on the standard “linear evaluation protocol”, which determines
representation quality based on the accuracy of a linear predictor. This measurement of quality may
not be directly applicable to tasks other than classification and regression (e.g. object detection and
segmentation), or to other downstream learning methods (e.g. fine-tuning or k-nearest-neighbors). In
these other settings, our theoretical framework is not directly applicable, but we might still hope that
the view-invariant features arising from Kernel PCA with K+ would be useful.

Additionally, our analysis precisely characterizes the optimal representation if all we know about our
target function g is that it satisfies Assumption 1.1, but in practice we often have additional knowledge
about g. In particular, Saunshi et al. (2022) show that inductive biases are crucial for building good
representations, and argue that standard distributions of augmentations are approximately disjoint,
producing many eigenvalues very close to one. Interestingly, this is exactly the regime where the
correspondence between the approximate kernels and the positive-pair kernel K+ begins to break
down in our experiments. We believe this opens up a number of exciting opportunities for research,
including studying the training dynamics of parameterized kernels K̂θ under a weak augmentation
regime, analyzing the impact of additional assumptions about g and inductive biases in K̂θ on
the minimax optimality of PCA representations, and exploring new model parameterizations and
objectives that trade off between inductive biases and faithful approximation of K+.

More generally, the authors believe that the connections drawn in this work between contrastive
learning, kernel methods, principal components analysis, and Markov chains provide a useful lens
for theoretical study of self-supervised representation learning and also give new insights toward
building useful representations in practice.
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A JUSTIFICATION OF ASSUMPTION 1.1

In this section we expand on the justification of Assumption 1.1 given in Section 1.

Recall that during contrastive learning we have a distribution p(Z) of original examples, and a
distribution p(A|Z = z) of augmented views for each original example z. Then, at downstream
supervised learning time, we additionally have a distribution p(Y = y|Z = z) of labels y ∈ R for
each original example z. (For simplicity we assume that the distribution of p(Z) remains unchanged
during the downstream learning step. We also assume y is a scalar; the vector case can be derived by
independently estimating each element of Y with a separate target function.)

Since the distribution of augmented views is typically defined via a random perturbation of Z
without using Y , the augmented views A are conditionally independently of the label Y given
the original example Z, so we have joint distribution p(a, y, z) = p(z)p(a|z)p(y|z). When
we draw a pair of augmented views for the same original example, we instead have a joint
p(a1, a2, y, z) = p(z)p(a1|z)p(a2|z)p(y|z). We also have some target function g : A → R we
are trying to approximate. For instance, we might want to approximate a Bayes-optimal predictor of
Y under some loss function, such as g(a) = E[Y |A = a] for the quadratic loss.

Common wisdom states that p(A|Z) should remove irrelevant information from Z without removing
(much) information about Y (most of the time). This means that, if augmentations are chosen
appropriately, we can expect E

[
(g(A)− Y )2] to be small under our joint probability distribution for

an appropriate choice of g.

We can then expand the left-hand side of Assumption 1.1 as

E
[
(g(A1)− g(A2))

2
]
= E

[
((g(A1)− Y )− (g(A2)− Y ))2

]
= E

[
(g(A1)− Y )2 − 2(g(A1)− Y )(g(A2)− Y ) + (g(A2)− Y )2

]
= 2E

[
(g(A)− Y )2]− 2E

[
(g(A1)− Y )(g(A2)− Y )

]
Furthermore, due to the law of total expectation combined with our conditional independence
assumptions, we know that

E
[
(g(A1)− Y )(g(A2)− Y )

]
= EZ,Y

[
EA1,A2

[
(g(A1)− Y )(g(A2)− Y )|Z, Y

]]
= EZ,Y

[
EA1,A2

[
(g(A1)− Y )|Z, Y

]
EA1,A2

[
(g(A2)− Y )|Z, Y

]]
= EZ,Y

[
EA

[
(g(A)− Y )|Z, Y

]2] ≥ 0.

We can then conclude that

E
[
(g(A1)− g(A2))

2
]
= 2E

[
(g(A)− Y )2]− 2E

[
(g(A1)− Y )(g(A2)− Y )

]
≤ 2E

[
(g(A)− Y )2]

Thus, Assumption 1.1 holds whenever E
[
(g(A)− Y )2] ≤ 1

2ε. Intuitively, if it is possible to estimate
Y with high accuracy using a deterministic function, then that function must satisfy Assumption 1.1.

Note that Assumption 1.1 itself may still hold even if g is not a good estimate of Y , and is well
defined even if we never specify Y and work only with the joint distribution p(A1, A2). This is
particularly useful because it allows us to quantify over all possible choices of g in a sensible way
with minimal knowledge about the label distribution itself.
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B EXISTING OBJECTIVES ARE MINIMIZED BY THE POSITIVE-PAIR KERNEL

In this section, we show that the positive-pair kernel is the optimum of the objectives shown in Table
1 (although this optimum is not unique for cross-entropy loss), and discuss some connections to other
objectives considered by previous work. Throughout this section, we use p(Z) to denote the true
data distribution over unperturbed examples, p(A|Z) to denote the distribution of augmented views
conditioned on a particular unperturbed example, and p(A) to denote the marginal distribution of
augmented views, e.g.

p(A = a) =
∑
z∈Z

p(Z = z)p(A = a|Z = z).

We use p+(A1, A2) to denote the positive pair distribution induced by p(Z) and p(A|Z), defined by

p+(A1 = a1, A2 = a2) =
∑
z∈Z

p(Z = z)p(A = a1|Z = z)p(A = a2|Z = z).

For notational convenience, we will use shorthand p(z) for p(Z = z), p(a) for p(A = a), p+(a1, a2)
for p+(A1 = a1, A2 = a2), and so on.

B.1 NT-XENT AND THE INFONCE OBJECTIVE

The NT-XEnt objective described by Chen et al. (2020a) (and previously used by Sohn (2016);
Van den Oord et al. (2018); Wu et al. (2018)) has the form

LNT-Xent(θ) = E
(a+

1 ,a+
2 )∼p+(A1,A2)

a−
i ∼p(A)

− log
exp

(
hθ(a

+
1 )⊤hθ(a

+
2 )

τ

)
exp

(
hθ(a

+
1 )⊤hθ(a

+
2 )

τ

)
+
∑

a−
i
exp

(
hθ(a

+
1 )⊤hθ(a

−
i )

τ

)
 .

For simplicity, we assume that all of the negative samples a−i are drawn independently from the
marginal distribution when computing the loss for a+1 and a+2 . (In practice, implementations often
generate negative samples by taking elements of other positive pairs, e.g. (a−1 , a

−
2 ) ∼ p+(a

−
1 , a

−
2 ),

(a−3 , a
−
4 ) ∼ p+(a

−
3 , a

−
4 ), and so on.)

We can decompose this objective into two parts: an InfoNCE-like loss (Van den Oord et al., 2018)

LInfoNCE(K̂θ) = E(a+
1 ,a+

2 )∼p+(A1,A2),a
−
i ∼p(A)

[
− log

K̂θ(a
+
1 , a

+
2 )

K̂θ(a
+
1 , a

+
2 ) +

∑
a−
i
K̂θ(a

+
1 , a

−
i )

]
combined with a particular parameterized function

K̂θ(a1, a2) = exp

(
hθ(a1)

⊤hθ(a2)

τ

)
.

where hθ : A → Rn+1 maps inputs to points on the n-dimensional hypersphere.

We first observe that K̂θ(a1, a2) defines a positive definite kernel, within the family of “dot product
kernels”. Indeed, when hθ is restricted to the unit hypersphere, this parameterization is equivalent to
the squared-exponential kernel (also called radial-basis-function kernel)

K̂θ(a1, a2) = exp

(
1− 1

2∥hθ(a1)− hθ(a2)∥2

τ

)
= exp(1/τ) exp

(
−∥hθ(a1)− hθ(a2)∥2

2τ

)
using the identity ∥hθ(a1) − hθ(a2)∥2 = 2 − 2hθ(a1)

⊤hθ(a2). Although this kernel is positive
definite, it has “infinite dimension” and cannot be expressed as an inner product of finite-dimensional
embedding vectors; nevertheless, we can still run algorithms such as Kernel PCA on a finite dataset.
(See Bach (2021, Chapter 7) for some additional background on positive-definite kernels, and Scetbon
& Harchaoui (2021) for discussion of other dot product kernels on the unit hypersphere.)

We next discuss the minimum of the NT-XEnt objective, under the unconstrained setting where we
allow K̂θ(a1, a2) to be an arbitrary symmetric function. The InfoNCE loss, in its more general form,
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is not necessarily symmetric: it is based on a distribution of contexts p(C), positive samples p(A|C),
and negative samples drawn from the marginal distribution P (A), and is given by

LInfoNCE(fθ) = Ec∼p(c),a+∼p(A|C=c),a−
i ∼p(A)

[
− log

fθ(c, a
+)

f(c, a+) +
∑

a−
i
fθ(c, a

−
i )

]
Van den Oord et al. (2018) show that every minimizer of this objective is of the form

f∗(c, a) =
p(a|c)
p(a)

· b(c) = p(a, c)

p(a)p(c)
· b(c)

for some function b(c) that does not depend on a. In other words, holding c fixed, f∗(c, a) ∝ p(a,c)
p(a)p(c) .

Intuitively, this is because the exact probability of (c, a+) being the positive pair given c and the
set {a+, a−1 , . . . , a

−
K} is also proportional to this density ratio, and the InfoNCE objective is a

cross-entropy objective for identifying the positive pair. (See also Poole et al. (2019) for a different
proof.)

In the case of the NT-XEnt contrastive objective, we choose the context C to be one of the aug-
mentations A+

1 , and the positive sample to be the other augmentation A+
2 drawn according to

p+(A
+
2 |A

+
1 ). We furthermore restrict our attention to symmetric functions K̂θ, e.g. functions for

which K̂θ(a1, a2) = K̂θ(a2, a1). In this case, the minimizer is

K̂∗(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
· b(a1) =

p+(a1, a2)

p(a1)p(a2)
· b(a2).

so we must have b(a1) = b(a2) for any pair (a1, a2) for which p+(a1, a2) > 0.

If we assume that the positive pair Markov chain is irreducible, e.g. that there is a single communicat-
ing class and it is possible to reach any augmentation in A from any other augmentation over a long
enough trajectory, then the function b(a) must be constant everywhere, and thus

K̂∗(a1, a2) = f∗(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
·B

for some B ∈ R+. In this case, K̂∗ is equivalent to K+ up to a scaling constant.

If the Markov chain has multiple communicating classes (e.g. if the augmentations can be partitioned
so that augmentations always come from the same partition), the function b(a) may assign a different
value to different communicating classes. Nevertheless, any such minimizer is still a kernel, since we
can write it as

K̂∗(a1, a2) =

〈√
b(a1)



p(a1|z1)
√

p(z1)

p(a1)

p(a1|z2)
√

p(z2)

p(a1)

...
p(a1|z|Z|)

√
p(z|Z|)

p(a1)

 ,
√

b(a2)



p(a2|z1)
√

p(z1)

p(a2)

p(a2|z2)
√

p(z2)

p(a2)

...
p(a2|z|Z|)

√
p(z|Z|)

p(a2)


〉

=
〈√

b(a1) · ϕ+(a1),
√

b(a2) · ϕ+(a2)
〉

Indeed, such a minimizer is equivalent to K+ except that it scales the inner product by the value of
b(a) for each communicating class. It is still possible to extract the set of Markov chain eigenfunctions
from the set of principal components of this kernel, although one must correct for the scaling factor
when computing the eigenvalues; see Appendix C.4 for details. Alternatively, one can ensure a
unique minimum by combining the NT-Xent/InfoNCE loss with either the spectral or logistic losses
(discussed below).

B.2 LOGISTIC LOSSES AND NT-LOGISTIC

Logistic losses have also been proposed for contrastive learning, including the NT-Logistic objective
as described in Chen et al. (2020a) and other versions described by Mikolov et al. (2013) and Tosh
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et al. (2021). Such losses take the form

LLogistic(fθ) = E(a+
1 ,a+

2 )∼p+(A1,A2)

[
− log σ(fθ(a

+
1 , a

+
2 ))
]

+ Ea−
1 ∼p(A),a−

2 ∼p(A)

[
− log σ(−fθ(a

−
1 , a

−
2 ))
]

where negative samples are drawn independently from the marginal distribution p(A). Tosh et al.
(2021) motivates this loss based on a binary classification: choose a label Y to be 0 or 1 with
probability 1/2 each, sample a positive pair (a1, a2) ∼ p+(A1, A2) if Y = 1 and a negative pair
a1 ∼ p(A), a2 ∼ p(A) if Y = 0, then use a learned model to predict Y given the pair. The minimizer
of this loss is then the conditional log-odds-ratio

f∗(a1, a2) = log
p(Y = 1|a1, a2)
p(Y = 0|a1, a2)

= log
p(a1, a2|Y = 1)p(Y = 1)

p(a1, a2|Y = 0)p(Y = 0)

= log
p+(a1, a2) · 1

2

p(a1)p(a2) · 1
2

= log
p+(a1, a2)

p(a1)p(a2)
.

For the particular case of the NT-Logistic objective, we parameterize fθ as

fθ(a1, a2) = log K̂θ(a1, a2) =
hθ(a1)

⊤hθ(a2)

τ

where we again define

K̂θ(a1, a2) = exp

(
hθ(a1)

⊤hθ(a2)

τ

)
.

The optimum (if we ignore the constraints of this particular form of K̂ and minimize over all functions
of two variables) is then

K̂∗(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
.

Note that in this case there is no proportionality constant.

B.3 THE SPECTRAL CONTRASTIVE LOSS

HaoChen et al. (2021) propose the Spectral Contrastive Loss as an alternative to other contrastive
losses with provable performance guarantees. The loss is defined as

LSpectral(K̂θ) = −2 · E(a+
1 ,a+

2 )∼p+(A1,A2)

[
K̂θ(a

+
1 , a

+
2 )
]
+ Ea−

1 ∼p(A),a−
2 ∼p(A)

[
K̂θ(a

−
1 , a

−
2 )

2
]

where they choose
K̂θ(a1, a2) = hθ(a1)

⊤hθ(a2).

for a learned embedding function hθ : A → Rd. We note that this directly satisfies the definition of a
kernel, in that it is an inner product in a transformed space. One interesting property of this kernel
approximation is that it can be negative, whereas the exponential-based kernel approximations in the
previous sections are always nonnegative.

HaoChen et al. show that this loss can be rewritten as

LSpectral(K̂θ) =
∑
a1,a2

(
−2p+(a1, a2)K̂θ(a1, a2) + p(a1)p(a2)K̂θ(a1, a2)

2
)

=
∑
a1,a2

(
p+(a1, a2)

2

p(a1)p(a2)
− 2p+(a1, a2)K̂θ(a1, a2) + p(a1)p(a2)K̂θ(a1, a2)

2

)

−
∑
a1,a2

p+(a1, a2)
2

p(a1)p(a2)

=
∑
a1,a2

(
p+(a1, a2)√
p(a1)p(a2)

−
√
p(a1)p(a2)K̂θ(a1, a2)

)2

− C,

where C =
∑

a1,a2

p+(a1,a2)
2

p(a1)p(a2)
is a constant independent of the model.
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If we again ignore the constraints on K̂θ, the minimum of the spectral loss must occur when

p+(a1, a2)√
p(a1)p(a2)

=
√

p(a1)p(a2)K̂θ(a1, a2),

for all a1 and a2, or in other words, when

K̂θ(a1, a2) =
p+(a1, a2)

p(a1)p(a2)
= K+(a1, a2).

HaoChen et al. continue by expanding their definition of K̂θ for a fixed representation d, and showing
that it relates to the spectral decomposition of a particular augmentation graph. It turns out that this
decomposition is equivalent to our decomposition in terms of eigenfunctions except for a scaling
factor of p(a)1/2; we discuss this connection more in Appendix C.3.

B.4 OTHER RELATED OBJECTIVES AND CONNECTIONS TO THE POSITIVE-PAIR KERNEL

We note that the log-probability ratio log p(u,v)
p(u)p(v) has an information-theoretic interpretation as the

pointwise mutual information between two random variates u and v. We can thus view the positive-
pair kernel K+ as being an exponentiated version of the pointwise mutual information between two
views A1 and A2. This ratio has been shown to be an optimal critic for mutual information estimation
(Poole et al., 2019; Nowozin et al., 2016; Hjelm et al., 2018).

Moustakides & Basioti (2019) describe several sample-based estimators for probability ratios between
arbitrary densities or mass functions. These estimators can be seen as generalizations of the the
contrastive losses in Table 1, with the goal of estimating the ratio between the positive and negative
pair distributions.

The VICReg semi-supervised learning technique can be reinterpreted in terms of the positive-pair
kernel as a particular form of kernel decomposition method. See Appendix E.2 for discussion of this
connection.

Although the parameterized kernels in Table 1 have a fairly simple form, some prior work has
considered more sophisticated parameterizations for learning kernels with neural networks (Wilson
et al., 2016; Sun et al., 2018). There have also been recent works related to reinterpreting existing
neural network models as kernels (Jacot et al., 2018; Shankar et al., 2020; Amid et al., 2022). It would
be interesting to compare the properties of these other kernel parameterizations with the implicit
kernels involved in contrastive learning methods.

Finally, we note that early approaches to contrastive learning such as DrLIM (Hadsell et al., 2006)
were motivated in part by removing limitations of previous spectral embedding techniques, which
required explicitly selecting an input-space distance metric or kernel function (e.g. Bengio et al.
(2003)). Our analysis reveals that that, for modern contrastive learning methods, choosing the
distribution of augmentations can still be seen as implicitly defining a kernel function of this form.
Conveniently, however, we do not need to be able to evaluate this kernel to train contrastive learning
models; we only need to sample augmentations.
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C RELATIONSHIP BETWEEN POSITIVE-PAIR KERNEL AND MARKOV CHAIN
EIGENFUNCTIONS

In this section, we describe the relationship between the positive-pair kernel principal components
and the Markov chain eigenfunctions in more detail.

C.1 NOTATION

We start by introducing some notation that will be useful.

Throughout, we will identify functions f : A → R as vectors f : RA, which will allow us to use
matrix notation for many of the relevant quantities. We will also use ei to represent the vector that
has a one at the ith position and zeros in all other positions.

We will let

DZ = diag(p(z1), p(z2), . . . , p(z|Z|)),

DA = diag(p(a1), p(a2), . . . , p(a|A|)),

be diagonal matrices containing the marginal probabilities of each element in Z and A, respectively,
under the true data distribution. We will assume that the distribution has full support, and thus both
DZ and DA are invertible. We also define the matrices

[PZ,A]z,a = p(z, a) [PZ→A]z,a = p(a|z) [PZ←A]z,a = p(z|a)
[PA,Z ]a,z = p(z, a) [PA←Z ]a,z = p(a|z) [PA→Z ]a,z = p(z|a)

Equivalently

PZ→A = D−1Z PZ,A, PZ←A = PZ,A D−1A ,

PA←Z = (PZ→A)
⊤, PA→Z = (PZ←A)

⊤.

From these, we can construct the positive pair probability matrix

PA,A = PA←Z DZ PZ→A

[PA,A]i,j = p(A1 = i, A2 = j) =
∑
z

p(A = i|z)p(z)p(A = j|z).

C.2 PROOF OF CORRESPONDENCE BETWEEN KERNEL PCA AND MARKOV CHAIN
EIGENFUNCTIONS

The positive-pair kernel. Writing the positive-pair kernel K+ in matrix form, such that [K+]i,j =

K+(i, j), our definition K+(a1, a2) =
p+(a1,a2)
p(a1)p(a2)

becomes the matrix equation

K+ = D−1A PA,AD
−1
A .

One way to expand K+ is as a product

K+ = D−1A PA←ZDZPZ→AD
−1
A =

(
D

1/2
Z PZ→AD

−1
A

)⊤ (
D

1/2
Z PZ→AD

−1
A

)
= Φ⊤+Φ+

where Φ+ ∈ RZ×A is a matrix whose columns are given by ϕ+:

Φ+ = D
1/2
Z PZ→AD

−1
A =

[
ϕ+(a1) ϕ+(a2) . . . ϕ+(a|A|)

]

=



p(a1|z1)
√

p(z1)

p(a1)

p(a2|z1)
√

p(z1)

p(a2)
· · · p(a|A||z1)

√
p(z1)

p(a|A|)

p(a1|z2)
√

p(z2)

p(a1)

p(a2|z2)
√

p(z2)

p(a2)
· · · p(a|A||z2)

√
p(z2)

p(a|A|)

...
...

. . .
...

p(a1|z|Z|)
√

p(z|Z|)

p(a1)

p(a2|z|Z|)
√

p(z|Z|)

p(a2)
· · · p(a|A||z|Z|)

√
p(z|Z|)

p(a|A|)

 .

19



Published as a conference paper at ICLR 2023

Equivalently, we have ϕ+(a) = Φ+ea.

Since K+(a1, a2) = ϕ+(a1)
⊤ϕ+(a2), ϕ+ is called a feature map for K+. Note that there are multiple

possible feature maps for K+: given any orthonormal matrix Q, the function ϕQ(a) = Qϕ+(a) is
also a feature map for the kernel, since

ϕQ(a1)
⊤ϕQ(a1) = ϕ+(a)

⊤Q⊤Qϕ+(a) = ϕ+(a)
⊤ϕ+(a) = K+(a1, a2).

Performing kernel PCA under K+ is equivalent to performing ordinary PCA over any of its feature
maps (since the principal component projection functions are independent of the particular feature
map chosen). We thus focus on analyzing the principal component projection functions for the feature
map ϕ+.

The population level principal components are the eigenvectors of the (uncentered) covariance matrix

Σ = Ep(a)[ϕ+(a)ϕ+(a)
⊤] = Ep(a)[Φ+eae

⊤
a Φ
⊤
+] = Φ+Ep(a)[eae

⊤
a ]Φ

⊤
+ = Φ+DAΦ

⊤
+.

Note that we are working with the uncentered principal components, as is commmon for kernel PCA:
we do not subtract the mean before computing the covariance. Since Σ is positive semidefinite, it can
be diagonalized as

Σ = U diag(σ2)U⊤ =
∑
i

λiuiu
⊤
i

where U = [u1,u2, . . . ,uk] is orthonormal and diag(σ2) = diag(σ2
1 , σ

2
2 , . . . , σ

2
k) is a diagonal

matrix of eigenvalues (here k = |Z| is the dimension of the feature map). Each of the vectors ui

is one of the population principal components of the transformed distribution ϕ+(A), giving the
directions of maximum variance, and the σ2

i measure the variance in that direction.

Given a new augmentation a ∈ A, we can then compute the projection of ϕ+(a) into each of these
principal component directions as hi(a) = u⊤i ϕ+(a).

The Markov Chain. We now redirect our attention to the positive pair Markov chain. The Markov
chain transition matrix is defined by [PA←A]a1,a2

= p+(a1|a2), or in matrix form

PA←A = PA,AD
−1
A .

We are interested in the left eigenvectors f⊤i PA←A = λif
⊤
i of this matrix PA←A, or equivalently the

right eigenvectors of its transpose P⊤A←A = PA→A, given by PA→Afi = λifi. Observe that then

D−1A PA,Afi = λifi

so equivalently

D
−1/2
A

(
D
−1/2
A PA,AD

−1/2
A

)
D

1/2
A fi = λiD

−1/2
A

(
D

1/2
A fi

)
.

It follows that D1/2
A fi is an eigenvector of the symmetric matrix

M = D
−1/2
A PA,AD

−1/2
A

with the same eigenvalue λi. (We note that the matrix M is exactly the symmetrized adjacency matrix
described by HaoChen et al. (2021).)

We can now diagonalize M as M = V ΛV ⊤ where V is orthogonal, and then write

V =
[
D

1/2
A f1 D

1/2
A f2 . . . D

1/2
A fk

]
= D

1/2
A [f1 f2 . . . fk] = D

1/2
A F

where
F = [f1 f2 . . . fk] .

Consider an arbitrary function g : A → R, and let g ∈ RA be its vector form, so that g(a) = ga =

g⊤ea. Also define ci = E[g(a)fi(a)] and c = [c1 c2 . . . ck]
⊤. Then

c = E
[
g(a)F⊤ea

]
= E

[
F⊤eae

⊤
a g
]
= F⊤DAg = V ⊤D

1/2
A g
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so we must have

g = D
−1/2
A

(
V ⊤
)−1

c = D
−1/2
A V c = Fc

and thus g(a) =
∑

i cifi(a). Additionally, we see that

E
[
g(a)2

]
= E

[
g⊤eae

⊤
a g
]
= g⊤DAg = c⊤F⊤DAFc

= c⊤(D
1/2
A F )⊤(D

1/2
A F )c = c⊤V ⊤V c = c⊤c =

∑
i

c2i .

Note that this also implies that the functions fi are orthonormal under the base measure p(a), e.g.
E[fi(a)2] = 1 and E[fi(a)fj(a)] = 0 for i ̸= j.

We can now prove our main results from Section 3.
Proposition 3.1. If g : A → R and ci = E[fi(a)g(a)], then

Ep+(a1,a2)

[(
g(a1)− g(a2)

)2]
=
∑
i

(2− 2λi)c
2
i . (3)

Proof. Observe that

Ep+

[(
g(a1)− g(a2)

)2]
= Ep+

[
g(a1)

2 − 2g(a1)g(a2) + g(a2)
2
]

= 2E
[
g(a)2

]
− 2Ep+

[g(a1)g(a2)]

= 2
∑
i

c2i − 2Ep+
[g(a1)g(a2)]

Expanding the second term, we have

Ep+ [g(a1)g(a2)] = Ep+

[
g⊤ea1e

⊤
a2
g
]
= g⊤Ep+

[
ea1e

⊤
a2

]
g

= g⊤PA,Ag

= g⊤D
1/2
A MD

1/2
A g

= g⊤D
1/2
A V ΛV ⊤D

1/2
A g

= c⊤F⊤D
1/2
A V ΛV ⊤D

1/2
A Fc

= c⊤(D
1/2
A F )⊤V ΛV ⊤(D

1/2
A F )c

= c⊤V ⊤V ΛV ⊤V c

= c⊤Λc =
∑
i

λic
2
i .

We conclude that Ep+

[(
g(a1)− g(a2)

)2]
= 2

∑
i(1− λi)c

2
i .

Theorem 3.2. The output (h1, σ
2
1), (h2, σ

2
2), . . . of population-level Kernel PCA under K+ and

the orthonormal basis of eigenfunctions fi of P with eigenvalues λi satisfy σ2
i = λi and hi(a) =

σifi(a) = λ
1/2
i fi(a) for all i and all a ∈ A (up to reordering and multiplicity of eigenspaces5).

Proof. Consider the matrix B = Φ+D
1/2
A , where Φ+ = D

1/2
Z PZ→AD

−1
A described above. Take the

singular value decomposition B = UΛ1/2V ⊤, where U and V are orthonormal and Λ1/2 is diagonal.
Now observe that

BB⊤ = UΛU⊤ = Φ+DAΦ
⊤
+ = Σ,

and

B⊤B = V ΛV ⊤ = D
1/2
A Φ⊤+Φ+D

1/2
A = D

1/2
A K+D

1/2
A

= D
1/2
A

(
D−1A PA,AD

−1
A

)
D

1/2
A

= D
−1/2
A PA,AD

−1/2
A = M.

5In other words, when some eigenvalues have multiplicity > 1, the hi and fi are not uniquely determined,
but we are free to choose them such that they satisfy this relationship.
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Thus, Σ and M must have the same eigenvalues. Diagonalize Σ and M in terms of U and V and
define hi(a) and fi(a) according to that diagonalization. We then have

hi(a) = u⊤i ϕ+(a)

= e⊤i U
⊤Φ+ea

= e⊤i U
⊤
(
BD

−1/2
A

)
ea

= e⊤i U
⊤
(
UΛ1/2V ⊤D

−1/2
A

)
ea

= e⊤i Λ
1/2V ⊤D

−1/2
A ea

= e⊤i Λ
1/2
(
D
−1/2
A V

)⊤
ea

= e⊤i Λ
1/2F⊤ea

= e⊤i Λ
1/2 [f1 f2 . . . fk]

⊤
ea

= λ
1/2
i f⊤i ea = λ

1/2
i fi(a).

One interesting consequence of this relationship is that the positive-pair kernel is fully determined by
the eigenfunctions and their eigenvalues, and we can write the kernel function directly as a weighted
dot product of this representation:
Proposition C.1. For any a1, a2 ∈ A, we have

K+(a1, a2) =
∑
i

λifi(a1)fi(a2),

where the fi and λi are as defined in Section 3.

Proof. Using the matrix notation and definitions described above, algebraic manipulation shows that

K+(a1, a2) = ea1
K+ea2

= ea1

(
D−1A PA,AD

−1
A

)
ea2

= ea1D
−1/2
A MD

−1/2
A ea2

= ea1D
−1/2
A V ΛV TD

−1/2
A ea2

= ea1
D
−1/2
A (D

1/2
A F )Λ(D

1/2
A F )TD

−1/2
A ea2

= ea1FΛFTea2

=
∑
i

λifi(a1)fi(a2).

C.3 RELATIONSHIP TO THE EIGENVECTORS OF THE SYMMETRIZED ADJACENCY MATRIX

Interestingly, the matrix M described above is exactly the symmetrized adjacency matrix discussed
by HaoChen et al. (2021). HaoChen et al. motivate their loss as estimating the eigenvectors of M
up to a scaling term by p(a)1/2, due to prior work showing that eigenvalues give information about
clustering structure in graphs.

The connection between the symmetrized adjacency matrix M and the positive-pair Markov chainis
well known; indeed, HaoChen et al. briefly discuss the positive-pair Markov chain in their Section
2, and Levin & Peres (2017, Chapter 12) introduce the matrix M when discussing the spectral
decomposition of a general symmetric Markov chain.

One way of thinking about this reweighting is as a change of measure. The eigenvectors of M
are orthonormal with respect to the counting measure over A, e.g. if you sum squared values over
all of A, you obtain 1, and the dot product of different eigenvectors is zero. On the other hand,
the eigenvectors fi (or, equivalently, the eigenfunctions fi) of the Markov chain are orthonormal
with respect to the measure p(A), e.g. if you take the expectation of squared values over random
augmentations, you obtain 1, and the uncentered covariance of different eigenfunctions is zero.
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We believe that using p(A) as a measure is a natural choice, since it allows us to reason about expected
values in a straightforward way. From this perspective, the p(a)1/2 scaling terms are a desirable
feature of the learned representation that allow us to directly reason about optimality with respect to
Assumption 1.1.

We note that our Assumption 1.1 could alternatively be expressed in terms of the probability-weighted
Laplacian matrix of the augmentation graph, given by L = DA − PA,A. Indeed, we have

Ep+

[(
g(a1)− g(a2)

)2]
= 2g⊤Lg.

C.4 RECOVERING PROPORTIONALITY CONSTANTS

As described in Appendix B.1, minimizing the NT-XEnt / InfoNCE loss may not exactly produce the
positive-pair kernel K+, but may instead learn a scaled version

K̂∗(a1, a2) =
〈√

z(a1) · ϕ+(a1),
√
z(a2) · ϕ+(a2)

〉
=
√
z(a1)

√
z(a2)K+(a1, a2),

where z : A → R+ is some function which is constant on each communicating class on the Markov
chain. (Since K+(a1, a2) = 0 whenever a1 and a2 are in separate communicating classes, we could
equivalently say K̂∗(a1, a2) = z(a1)K+(a1, a2) = z(a2)K+(a1, a2).)

When the Markov chain has one communicating class, K̂∗ is simply a scaled version of K+. In
this case, all of the principal component projection functions for K̂∗ are still the eigenfunctions
of the Markov chain, but the eigenvalues may be scaled by that constant. The true eigenvalues of
the eigenfunctions can then be estimated using equation Equation 4, which states that E[(fi(a1)−
fi(a2))

2] = 2(1− λi).

When the Markov chain has multiple communicating classes, we can partition the eigenfunctions so
that each eigenfunction is nonzero on a single communicating class. Since the scaling function z
acts as a scaling factor for each communicating class, the principal component functions will then be
scaled copies of these partitioned eigenfunctions. We can then similarly estimate the true eigenvalues
for each of these eigenfunctions using Equation 4.
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D GENERALIZATION PROPERTIES OF THE EIGENFUNCTION REPRESENTATION

D.1 MIN-MAX OPTIMALITY OF EIGENFUNCTIONS

We now prove the min-max optimality of the eigenfunctions with respect to their L2 norm. (We note
that these results are closely related to the Courant–Fischer–Weyl min-max principle (Bhatia, 2013,
Chapter III), which characterizes the eigenvalues and eigenvectors of a Hermitian matrix in terms of
a similar adversarial game.)

Theorem 4.1. Let Fr = {a 7→ β⊤r(a) : β ∈ Rd} be the subspace of linear predictors
from representation r, and Sε be the set of functions satisfying Assumption 1.1. Let rd∗(a) =
[f1(a), f2(a), . . . , fd(a)] be the representation consisting of the d eigenfunctions of the positive
pair Markov chain with the largest eigenvalues. Then Frd∗

maximizes the view invariance of the
least-invariant unit-norm predictor in Frd∗

:

Frd∗
= argmin

dim(F)=d

max
ĝ∈F, E[ĝ(a)2]=1

Ep+

[(
ĝ(a1)− ĝ(a2)

)2]
. (5)

Simultaneously, Frd∗
minimizes the (quadratic) approximation error for the worst-case target function

satisfying Assumption 1.1 for any fixed ε:

Frd∗
= argmin

dim(F)=d

max
g∈Sε

min
ĝ∈F

Ep(a)

[(
g(a)− ĝ(a)

)2]
. (6)

Proof. We will start by deriving Equation 6, and derive Equation 5 afterward. We can think of
Equation 6 as equivalent to the following adversarial game:

1. Player chooses a dimension-d subspace F ⊂ A → R of functions.

2. Adversary chooses a function g ∈ A → R with a fixed level of invariance E[(g(a1) −
g(a2))

2] = 2g⊤(DA − PA,A)g = ϵ. Without loss of generality, we let ϵ = 2 so that
g⊤(DA − PA,A)g = 1; other values of ϵ will just lead to scaling the function g.

3. Player chooses the best ĝ ∈ F to minimize E[(ĝ(a)− g(a))2]

We can analyze this game by working backward from the innermost step, step 3. Given the function
class F and adversarially chosen target function g, choosing ĝ to minimize the expected squared
error is equivalent to finding the orthogonal projection of g into F with respect to the measure p(A),
e.g. with respect to the weighted L2 norm L(2; p(A)). More precisely, we want

ĝ = argmin
ĝ∈F

E[(ĝ(a)− g(a))2] = argmin
ĝ∈F

(ĝ − g)⊤DA(ĝ − g)

= argmin
ĝ∈F

(D
1/2
A ĝ −D

1/2
A g)⊤(D

1/2
A ĝ −D

1/2
A g)

But this is just finding the ĝ ∈ F which minimizes ∥D1/2
A ĝ − D

1/2
A g∥2. This is given by the

orthogonal projection of the vector D1/2
A g into D

1/2
A F , under the ordinary L2 norm.

We can now define R as the orthogonal projection operator on D
1/2
A F , such that Rh ∈ D

1/2
A F

(e.g. D−1/2A Rh ∈ F), and for D1/2
A f ∈ D

1/2
A F (e.g. f ∈ F), we have D

1/2
A f = RD

1/2
A f (e.g. f =

D
−1/2
A RD

1/2
A f ). Observe that R is real and symmetric, and has eigenvalue 1 with multiplicity d and

all other eigenvalues are 0. Since R characterizes the subset, we will find it convenient to redefine our
objective for the initial player as choosing R, and then letting F = {D−1/2A RD

1/2
A g : g ∈ A → R}.

We then have

ĝ = argmin
ĝ∈F

E[(ĝ(v)− g(v))2] = D
−1/2
A RD

1/2
A g.

24



Published as a conference paper at ICLR 2023

and the cost is

E[(ĝ(v)− g(v))2] = (D
1/2
A f −D

1/2
A g)⊤(D

1/2
A f −D

1/2
A g)

= (RD
1/2
A g −D

1/2
A g)⊤(RD

1/2
A g −D

1/2
A g)

= (D
1/2
A g)⊤(R− I)⊤(R− I)(D

1/2
A g)

= g⊤D
1/2
A (R⊤R− 2R+ I)D

1/2
A g

= g⊤D
1/2
A (I −R)D

1/2
A g.

We next consider step 2. Given R, what g should the adversary pick? Letting L = DA − PA,A, the
adversary is constrained to pick g such that g⊤Lg = (L1/2g)⊤(L1/2g) = 1. We note that L is not
full rank: in particular, any eigenvector of M with eigenvalue 1 is an eigenvector of L of eigenvector
zero. Any function g chosen by the adversary must then be the sum of two parts:

• a component in in the range of L, of the form
(
L†
)1/2

u where ∥u∥2 = 1 and † represents
the Moore-Penrose pseudoinverse,

• and a component in the null space of L.

Overall, we can thus write g =
(
L†
)1/2

u + h where ∥u∥2 = 1 and h⊤Lh = 0. Similarly, the
response ĝ must also have two components, one in the range of L and one in the null space of L.
There are then two cases. If F does not span the entire null space of L, the adversary can force an
arbitrarily high approximation error by choosing h to be in the null space of L but not F . On the
other hand, if F spans the entire null space of L, the player can always perfectly approximate h, and
so the adversary is forced to maximize cost by using u. In particular, they will pick

u = argmax
∥u∥2=1

(
(
L†
)1/2

u)⊤D
1/2
A (I −R)D

1/2
A (

(
L†
)1/2

u)

= argmax
∥u∥2=1

u⊤
(
L†
)1/2

D
1/2
A (I −R)D

1/2
A

(
L†
)1/2

u

= argmax
∥u∥2=1

u⊤Au

where A is the matrix
(
L†
)1/2

D
1/2
A (I−R)D

1/2
A

(
L†
)1/2

. The optimal choice for u is an eigenvector
of A with maximal eigenvalue, and the cost is then that maximal eigenvalue. But observe that M is
similar to the following:

A ∼ (
(
L†
)1/2

D
1/2
A )−1M(

(
L†
)1/2

D
1/2
A )

= (I −R)D
1/2
A L†D

1/2
A

= (I −R)
(
D
−1/2
A LD

−1/2
A

)†
:= A′

Similar matrices have the same eigenvalues, so the maximum cost attainable by the adversary is the
maximal eigenvalue of A′.

Finally, we consider step 1. Which R should our player choose to minimize this maximum cost?
They should first ensure the cost is finite, by choosing R to span the null space of D−1/2A LD

−1/2
A .

(Note that if d is less than the dimension of this null space, there is no choice that ensures a finite cost;
in this case every representation has unbounded worst-case approximation error.) Afterward, they
should ensure that A′ has the smallest maximum eigenvalue. The sorted vector of eigenvalues of A′

is bounded below by the vector obtained by matching the largest eigenvalues of
(
D
−1/2
A LD

−1/2
A

)†
with the smallest of (I −R) (Bhatia, 2013, exercise III.6.14)6. Let d∗ be the dimension of the null
space of D−1/2A LD

−1/2
A . Then I − R has d eigenvalues with value 0 (i.e. 0 is an eigenvalue with

multiplicity d). Of these, d∗ must be used to span this null space, and the remaining d− d∗ (if any)
6

See also https://math.stackexchange.com/questions/573583/eigenvalues-of-the-product-of-two-symmetric-matrices
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can be used to reduce the eigenvalues of A′. Thus, the largest eigenvalue of A′ is always at least

as big as the (d− d∗ + 1)-th largest eigenvalue of
(
D
−1/2
A LD

−1/2
A

)†
. We can attain this bound by

setting R to exactly capture the (d− d∗)-dimensional subspace of
(
D
−1/2
A LD

−1/2
A

)†
spanned by its

top eigenspaces, along with the d∗-dimensional null space of D−1/2A LD
−1/2
A .

But the combination of the null space of D−1/2A LD
−1/2
A and the top eigenspace of

(
D
−1/2
A LD

−1/2
A

)†
is just the space spanned by the d eigenvectors of D−1/2A LD

−1/2
A with the smallest eigenvalues.

Furthermore,

D
−1/2
A LD

−1/2
A = D

−1/2
A (DA − PA,A)D

−1/2
A

= I −D
−1/2
A PA,AD

−1/2
A = I −M,

so we are looking for the eigenvectors of M with the largest eigenvalues, where M is the matrix
described in Appendix C.

Thus, the player should choose F such that D1/2
A F spans the top d-dimensional eigenspace of M ,

e.g. they should choose functions of the form D
−1/2
A vi where the vi are the eigenvectors of M with

largest eigenvalue. But these are exactly the left eigenvectors fi of the positive pair Markov chain,
which is how rd∗ is defined. We conclude that Frd∗

is the optimal choice for the player, and thus
Equation 6 holds.

Indeed, we can conclude something further: if λd+1 is the (d+ 1)th eigenvalue of the positive pair
Markov chain (the variance along the (d+ 1)th principal component of the positive-pair kernel), then

as long as d ≥ d∗, (1− λd+1)
−1 is the (d− d∗ + 1)th eigenvalue of

(
D
−1/2
A LD

−1/2
A

)†
, which is

exactly the worst-case approximation error for Frd∗
against any function with E[(g(v1)− g(v2))

2] =

2g⊤Lg = 2. Scaling by ε, if E[(g(v1)− g(v2))
2] = ε then the worst case error is 1

2ε/(1− λd+1). In
other words,

max
g∈Sϵ

min
ĝ∈F

rd∗

Ep(a)

[(
g(a)− ĝ(a)

)2]
=

ε

2(1− λd+1)
.

We now return our attention to Equation 5. This equation can also be formulated as an adversarial
game:

1. Player chooses a rank-d subspace F ⊂ A → R of functions.

2. Adversary chooses a function ĝ ∈ F with unit norm E[ĝ(v)2] = ĝ⊤DAĝ = 1 to maximize
E[(ĝ(v1)− ĝ(v2))

2] = 2ĝ⊤Lĝ.

We can again identify the choice of F with the choice of the orthogonal projection matrix R on D
1/2
A F .

We know ĝ ∈ F , so we can write ĝ = D
−1/2
A RD

1/2
A ĝ. Also note that for any h (not even necessarily

in F), D−1/2A RD
1/2
A h ∈ F . Now suppose we choose an h so that E[h(a)2] = h⊤DAh = 1, and

define ĝ = D
−1/2
A RD

1/2
A h. Then

ĝ⊤DAĝ = h⊤D
1/2
A RD

−1/2
A DA(D

−1/2
A RD

1/2
A h)

= h⊤D
1/2
A R2D

1/2
A h

= h⊤D
1/2
A RD

1/2
A h

≤ h⊤D
1/2
A ID

1/2
A h = 1

because R has eigenvalues at most 1. So, the following are equivalent:

• choosing ĝ ∈ F with E[ĝ(v)2] ≤ 1

• choosing h ∈ RA with E[h(v)2] ≤ 1 and letting ĝ = D
−1/2
A RD

1/2
A h
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We also note that there is no advantage to the adversary from picking a function such that E[ĝ(v)2] < 1.
So we can reframe step 2 as choosing h so that E[h(v)2] = 1, to maximize

2
(
D
−1/2
A RD

1/2
A h

)⊤
L
(
D
−1/2
A RD

1/2
A h

)
We can further reparameterize by letting h = D

−1/2
A u, so that E[h(v)2] = 1 is equivalent to

∥u∥22 = 1. We then have cost

C = 2ĝ⊤Lĝ = 2(h⊤D
1/2
A RD

−1/2
A )L(D

−1/2
A RD

1/2
A h)

= 2(u⊤D
−1/2
A )D

1/2
A RD

−1/2
A LD

−1/2
A RD

1/2
A (D

−1/2
A u)

= 2u⊤RD
−1/2
A LD

−1/2
A Ru

The choice that maximizes the cost is then an eigenvector of

B = 2RD
−1/2
A LD

−1/2
A R =

(
L1/2D

−1/2
A R

)⊤ (
L1/2D

−1/2
A R

)
with maximal eigenvalue, and the cost is 2 times the maximum eigenvalue of B. But note that B has
the same eigenvalues as

B′ =
(
L1/2D

−1/2
A R

)(
L1/2D

−1/2
A R

)⊤
= L1/2D

−1/2
A RD

−1/2
A L1/2

since R2 = R. And B′ is similar to

B′′ = D
−1/2
A LD

−1/2
A R

so B and B′′ have the same eigenvalues.

We now consider step 1. What should the player choose for R? By a similar eigenvalue-of-product
argument as used for Equation 6, regardless of the choice of R the largest eigenvalue of B′′ must
always be at least as big as the dth smallest eigenvalue of D−1/2A LD

−1/2
A , because R has eigenvalue

1 with multiplicity d. We can attain this minimum cost by choosing R to project into the eigenspace
spanned by the d eigenvectors of D−1/2A LD

−1/2
A with the smallest eigenvalues.

But observe that the smallest eigenvalues and corresponding eigenvectors of D−1/2A LD
−1/2
A = I−M

are exactly the largest eigenvalues and corresponding eigenvectors of M = D
−1/2
A PA,AD

−1/2
A =

I − L, which as we argued above, is exactly the set of eigenfunctions fi used to construct rd∗ .

In this case, the optimal cost itself is determined by the largest eigenvalue of D−1/2A LD
−1/2
A (times

two), so we obtain

max
ĝ∈F

rd∗
,

E[ĝ(a)2]=1

Ep+

[(
ĝ(a1)− ĝ(a2)

)2]
= 2(1− λd).

D.2 GENERALIZATION BOUND FOR LINEAR PREDICTION WITH THE EIGENFUNCTION
REPRESENTATION

Proposition 4.2. Let (Ai, Yi)
n
i=1 be i.i.d. samples, choose R ≥ 0, and consider the constrained

empirical risk minimizer β̂R ∈ argmin∥β∥2≤R n−1
∑n

i=1|⟨β, r∗d(Ai)⟩ − Yi|. Then the expected
excess risk of β̂R is bounded by:

E
[
E(β̂R)

]
≤ 2dR√

n
+

√
d(∥β∗∥2 −R)+ +

√
ε

2(1− λd+1)

where E(β) := R(β)−R∗ is the excess risk and (x)+ := max{x, 0}.
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Proof. We start by decomposing the excess risk as:

R(β̂R)−R∗ =
(
R(β̂R)− inf

∥β∥2≤R
R(β)

)
+

(
inf

∥β∥2≤R
R(β)−R(β∗)

)
+ (R(β∗)−R∗)

The first term is the estimation error, which we can readily bound by first noting that:

E
[
∥rd∗(A)∥22

]
= E

[
d∑

i=1

fi(A)2

]
=

d∑
i=1

E
[
fi(A)2

]
= d

then noticing that our loss is 1-Lipschitz, and finishing with the standard Rademacher complexity
argument for constrained linear classes Kakade et al. (2008) to get:(

R(β̂R)− inf
∥β∥2≤R

R(β)

)
≤ 2dR√

n
(7)

The second term is an approximation error term due to the use of a constrained linear class instead of
the full linear class. Define β̃∗ := β∗

max{∥β∗∥2/R,1} . Then we can bound this second term by:

inf
∥β∥2≤R

R(β)−R(β∗) ≤ R(β̃∗)−R(β∗)

≤ E
[∣∣∣〈rd∗(A), β̃∗ − β∗

〉∣∣∣]
≤ E

[
∥rd∗(A)∥2

]
∥β̃∗ − β∗∥2

≤
√
d(∥β∗∥2 −R)+

(8)

where the second inequality follows from the 1-Lipschitznes of the loss, the third by Cauchy-Schwartz
inequality, and the last by Jensen’s inequality.

The third and last term is an approximation error term due to the use of the function class given by
the span of the first d eigenfunctions (fi)di=1. We can bound it as follows:

R(β∗)−R∗ ≤ E
[∣∣〈rd∗(A), β∗

〉
− g∗(A)

∣∣]
≤
√

E[(⟨rd∗(A), β∗⟩ − g∗(A))2] ≤
√

ε

2(1− λd+1)

(9)

where the first inequality follows from the 1-Lipschitznes of the loss, the second from Jensen’s
inequality, and the last by first noticing that the function h(a) :=

〈
rd∗(a), β

∗〉 satisfies h =

argming∈F
rd∗

E
[
(g(A)− g∗(A))2

]
(since it is the projection of g∗ onto Frd∗

under the norm

∥x∥2 := E
[
x2(A)

]
), then appealing to the proof of Proposition 4.1. Combining the bounds of

equations (7), (8), and (9), we obtain the stated generalization bound.
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E EIGENFUNCTION ESTIMATION TECHNIQUES

In practice, we do not generally have access to the closed form for K+ or the the full population
of our examples, but instead only have access to a dataset of positive pairs (a1, a2) drawn from the
distribution p+(a1, a2) (or, more commonly, a dataset of examples z and a sampling algorithm for
p(A|Z)). In this section we discuss some approaches for approximating the optimal eigenfunction
representation from these samples.

E.1 COMBINING CONTRASTIVE LEARNING WITH KERNEL PCA

Our analysis in Sections 2 and 3 motivates the following procedure:

1. Train a contrastive learning model using an existing contrastive learning objective.

2. Using the equations in Table 1, identify the approximate kernel K̂θ, which will hopefully
be similar to the positive-pair kernel K+ assuming we have converged to a solution to the
objective.

3. Perform (or approximate) Kernel PCA using K̂θ and a large set of individual views drawn
from p(A).

4. Use the first d extracted principal component projection functions hi : A → R to construct
a representation, possibly normalizing by σi to obtain the orthonormal basis fi(a) =
σ−1i hi(a).

We note that applying a rotation matrix to the optimal representation does not affect the expressivity
of that representation. It is thus sufficient to identify the subspace spanned by the first d principal
component projection functions. If the representation dimension d is known in advance, it may be
possible to adjust the contrastive learning method to accomplish this without requiring a separate PCA
step. In particular, when using the spectral contrastive loss with a d-dimensional linear kernel head,
the population minimizer of the loss will exactly correspond to the best d-dimensional approximation
of K+. This means that the output layer representation will be exactly the set of principal component
projection functions rotated by some orthogonal matrix.

On the other hand, including the PCA step makes it possible to decouple the representation dimension
from the kernel approximation method, which may be advantageous if the learning dynamics of a
different parameterization or loss are better, or if d is not known in advance. The PCA step also
makes it possible to diagnose how well the learned representation is capturing properties of K+ by
checking the extent to which Equation 4 is satisfied.

Directly applying kernel PCA can be expensive for large datasets, due to the need to decompose
the full Gram matrix of kernel similarities. A more computationally-friendly approach is to first
approximate K̂θ with a lower-rank approximation, such as the Nyström method (Williams & Seeger,
2000), and then perform PCA over that approximation (Sriperumbudur & Sterge, 2017; Ullah et al.,
2018; Sterge et al., 2020). This can be especially useful when the dataset is much larger than the
number of desired eigenfunctions.

We note that approaches based on Kernel PCA may be numerically unstable in the presence of many
eigenvalues close to 1, since small kernel estimation errors may be amplified by the eigendecom-
position process. Although we were able to apply these techniques to models trained on our two
synthetic datasets, we have been so far unable to obtain a reliable estimate of the eigenfunctions for
real-world datasets such as those considered by Chen et al. (2020a). In particular, we attempted to
apply the Nyström method to a pretrained SimCLR model but ran into numerical precision issues and
were unable to form a good approximation of the learned hypersphere-based kernel K̂θ. See also
Appendix F.5 for a preliminary analysis of a model with a constrained-norm linear kernel head on
ImageNet; although we were able to run Kernel PCA with this model, it does not appear to be a good
approximation of K+.
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E.2 DIRECT EIGENFUNCTION EXTRACTION, AND CONNECTIONS TO VICREG

An alternative strategy for estimating the eigenfunctions fi is to combine the contrastive learning and
Kernel PCA steps into a single parameterized model. This is possible using parameterized spectral
decomposition techniques such as SpIN (Pfau et al., 2018) or NeuralEF (Deng et al., 2022).

We note that these techniques are usually motivated as extracting the eigenfunctions of the kernel
operator T [f ](a1) =

∫
K(a1, a2)f(a2)p(a2) da2, or in other words, solving the eigenfunction

equation

λifi(a1) =

∫
K(a1, a2)fi(a2)p(a2) da2.

In this case, substituting the form of K+ reveals that this is equivalent to finding the eigenfunctions
of the positive pair Markov chain:

λifi(a1) =
∑
a2

K+(a1, a2)fi(a2)p(a2) =
∑
a2

p+(a1, a2)

p(a1)p(a2)
fi(a2)p(a2)

=
∑
a2

p+(a1, a2)

p(a1)
fi(a2)

=
∑
a2

p(a2|a1)fi(a2)

= Ea2|a1
[fi(a2)]

Connections between NeuralEF and VICReg. We now describe in more detail how to apply the
NeuralEF technique to estimate the basis of eigenfunctions of the positive pair Markov chain. The
NeuralEF approach approximates the eigenfunctions fi of a kernel K by solving an asymmetric set

of constrained optimization problems f̂j = argmaxf̂j Rjj −
∑j−1

i=0

R2
ij

Rii
subject to the constraint that

Cj = 1, where

Rij =
∑
a1, a2

f̂i(a1)K(a1, a2)f̂j(a2)p(a1)p(a2), Cj =
∑
a

f̂j(a)
2p(a) = E

[
f̂j(a)

2
]
.

Substituting the positive-pair kernel K+(a1, a2) =
p+(a1,a2)
p(a1)p(a2)

reveals an alternative form for the Rij

terms, allowing us to apply NeuralEF using samples from p+:

Rij =
∑
a1, a2

f̂i(a1)
p+(a1, a2)

p(a1)p(a2)
f̂j(a2)p(a1)p(a2) = Ep+(a1,a2)

[
f̂i(a1)f̂j(a2)

]
.

Interestingly, the resulting algorithm closely resembles the Variance-Invariance-Covariance regu-
larization (VICReg) self-supervised learning method proposed by Bardes et al. (2021): the Cj = 1
constraint ensures each function has sufficient variance, the R2

ij term reduces the covariance between
features, and maximizing Rjj = E[f̂j(a1)f̂j(a2)] over positive pairs leads to representations that
are as invariant as possible between positive pairs. (Note, however, that the asymmetric weighted

covariance penalties
R2

ij

Rii
in NeuralEF ensure that eigenfunctions are recovered in the correct order

without interfering with one another.)

Stabilizing NeuralEF for contrastive learning. Althoug the NeuralEF-based approach works well
when Rii is large for all i, the method becomes numerically unstable when Rii is small. And since
Rii ≈ λi, this makes it difficult to recover eigenfunctions whose eigenvalues λi are close to zero.

To enable recovery of all eigenfunctions, including those with λi = 0, we do not directly apply
Neural EF to K+ in our experiments. Instead, we construct a modified kernel with the help of a
modified positive pair distribution

pmix(a1, a2) = 0.5p+(a1, a2) + 0.5p(a1)1[a2 = a1]

where 1[a2 = a1] is 1 when a1 = a2 and 0 otherwise. Conceptually, with probability 50%, we
sample a positive pair (a1, a2) as normal, and otherwise, we sample a single augmentation a1 and
then choose a2 = a1.
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The corresponding positive-pair Markov chain transition matrix can be written as

Pmix = 0.5P + 0.5I.

It follows that the eigenfunctions for this modified distribution are the same as those for our original
positive pair distribution, but the eigenvalues are transformed according to λmix

i = 0.5λi + 0.5. We
can thus apply Neural EF to the corresponding kernel Kmix

+ (a1, a2) = pmix(a1, a2)/p(a1)p(a2), and
recover the original λi by inverting this transformation.

Substituting this into the Neural EF objective, we obtain

Rmix
ij =

∑
a1, a2

f̂i(a1)
pmix(a1, a2)

p(a1)p(a2)
f̂j(a2)p(a1)p(a2)

= 0.5
∑
a1, a2

f̂i(a1)
p+(a1, a2)

p(a1)p(a2)
f̂j(a2)p(a1)p(a2)

+ 0.5
∑
a1, a2

f̂i(a1)
p(a1)1[a2 = a1]

p(a1)p(a2)
f̂j(a2)p(a1)p(a2)

= 0.5
∑
a1, a2

f̂i(a1)f̂j(a2)p+(a1, a2) + 0.5
∑
a1, a2

f̂i(a1)f̂j(a2)p(a1)1[a2 = a1]

= 0.5 Ep+(a1,a2)

[
f̂i(a1)f̂j(a2)

]
+ 0.5 Ep(a1)

[
f̂i(a1)f̂j(a1)

]
.

We then estimate Rmix
ij in each minibatch by averaging over minibatch positive pairs for the first term

and over all minibatch augmentations for the second term. (In practice, we drop the 0.5 scaling factor
in the loss.) We find that this modification greatly stabilizes the Neural EF objective when estimating
large numbers of eigenfunctions, and in particular makes it possible to learn eigenfunctions of K+

with eigenvalues that are very small or even zero.
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Figure 6: Eigenfunction and eigenvalue estimation accuracy on the overlapping regions task, for
a selection of models. Top row: Alignment between true eigenspaces and the learned kernel
principal components, with perfect alignment shown as a block diagonal matrix. Bottom row:
Relationship between learned kernel eigenvalue λ and the corresponding positive-pair discrepancy
Ep+

[
(f(a1)− f(a2))

2
]
, with the relationship predicted by Equation 4 shown with a dashed line.

F EXPERIMENT DETAILS

In this section we describe our experiments and their results in more detail. We start by presenting the
full set of results summarized in Section 6 and Figure 5. We then describe details regarding model
training. We conclude with some additional preliminary results regarding supervised learning with
Kernel PCA representations on MNIST and eigenfunction extraction on ImageNet.

F.1 ADDITIONAL EIGENFUNCTION ESTIMATION RESULTS

Overlapping regions task. Results for our full set of models on the “overlapping regions” task are
shown in Figure 6.

We find that, under suitable losses, linear kernels, hypersphere kernels, and NeuralEF can all
produce good approximations of the basis of eigenfunctions, despite their diferent parameterizations.
Specifically, unconstrained-norm linear kernels with the spectral loss, hypersphere kernels with
a learned bias under either a XEnt-Logistic loss mixture or the spectral loss, and the NeuralEF
eigenfunction estimation method all produce eigenfunction estimates that are reasonably aligned to
the true eigenfunctions, and eigenvalue estimates that are close to the true eigenvalues. However,
especially for eigenspaces with similar eigenvalues, the eigenfunctions occasionally appear in the
incorrect order, and have a small amount of mixing between eigenspaces. The relationship between
approximate eigenvalues and positive-pair discrepancies also closely matches the prediction from
Equation 4.

We note also that alignment with the basis of eigenfunctions emerges during training, and is not
simply a property of the model architecture, as evidenced by the lack of alignment when applying
Kernel PCA to randomly initialized models.

The loss function used influences the learning dynamics and final result. Using the XEnt loss alone
produces a reasonably-well aligned eigenfunction decomposition, but has eigenvalues scaled by a
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Figure 7: Alignments and discrepancy relationships for principal component functions on MNIST task
for three augmentation strengths. Top row: Alignment (squared dot products) of the first 20 principal
component functions between runs of Kernel PCA on different kernels, with perfect alignment
corresponding to a diagonal matrix. (Left column shows alignment between two independent runs of
Kernel PCA on the true kernel K+.) Middle row: Relationship between eigenvalue λ and positive-pair
discrepancy for the first 256 principal components (omitting any with λ = 0), with the prediction from
Equation 4 shown as a gray dashed line. Bottom row: Ordered eigenvalues for each approximation,
relative to those of the true kernel (dashed line).

constant, since the XEnt loss only measures ratios between kernel evaluations and thus only recovers
the kernel up to a constant factor (discussed in Appendix B.1). The Logistic loss alone appears
to lead to inferior decomposition quality, although eigenvalues are in the right order of magnitude.
Interestingly, the spectral loss seems to work even for hypersphere kernel approximations, although
we found it to be the most unstable; successfully training a hypersphere kernel with the spectral loss
required initializing the bias b to a large negative number.

Constraints on the kernel approximation degrade eigenfunction and eigenvalue estimates. For
the hypersphere kernel, fixing the bias b to zero led to eigenvalues that were abnormally small,
whereas reducing the dimensionality of the hypersphere from 32 to 3 both degraded eigenfunction
alignment and led to deviations from Equation 4. For the linear kernel, using a smaller dimension
led to estimating only the eigenfunctions with larger eigenvalues, and imposing a norm constraint
of ∥hθ(a)∥2 = 10 both reduced the number of accurately-captured eigenfunctions and caused the
eigenvalues to be smaller than predicted by Equation 4.

MNIST task. Results for our full set of models at three augmentation strengths are shown in
Figure 7.

We compare two types of hypersphere kernel parameterization: a “global scale” version using
exp(hθ(a1)

⊤hθ(a2)/τ + b) and a “local scale” version using exp(hθ(a1)
⊤hθ(a2)/τ + sθ(a1) +

sθ(a2)). The second is more expressive, but the first is closer to that considered by prior work such as
Chen et al. (2020a). (Note that most work with hypersphere-based models fixes b = 0, but also uses
the XEnt loss alone, which is not affected by the value of b. We include b and include the Logistic
loss to assess how well the models can recover the correct values of the eigenvalues.).

Note that, although we can exactly evaluate K+ on any pair of augmented views, the space A
(containing all multisets of k pixels) is too large to enumerate, preventing us from exactly computing
the exact eigenfunctions of K+. Instead, we use Kernel PCA over a large set of samples to estimate
the “ground truth” eigenfunctions. To better understand the impact of this step, we also include a
comparison between two independent runs of Kernel PCA on K+.

Weaker augmentations make principal component estimation difficult. We find that Kernel PCA can
more reliably recover principal components with large gaps between eigenvalues, and is influenced

33



Published as a conference paper at ICLR 2023

by random noise as eigenvalues become closer together. In particular, as augmentation strength
decreases, there are more eigenvalues close to 1, and it becomes more difficult to identify the most
significant principal components. Due to the stochasticity of Kernel PCA, it is difficult to accurately
identify eigenfunctions even when given direct access to K+, and two runs of Kernel PCA begin to
diverge as eigenvalues decrease. Eigenfunction quality degrades even faster when comparing results
of Kernel PCA for a learned model and for K+: the learned models only allow recovery of a few
principal components accurately at larger augmentation strengths.

More expressive kernel approximations recover more eigenfunctions. We observe that the linear
kernel head and Neural EF method are able to recover a larger number of eigenfunctions accurately
compared to hypersphere kernels, and have eigenvalues that lie closer to the Equation 4 prediction.
Additionally, we find that adding a per-example scale function sθ to the hypersphere kernel leads to
more correctly-recovered eigenfunctions and fewer outlier eigenvalues.

Learned models have faster eigenvalue decay than K+. In general, the eigenvalues of learned kernels
decay faster than the eigenvalues of the true positive-pair kernel K+. Interestingly, however, the
eigenvalues still appear to follow the relationship predicted by Equation 4 for sufficiently expressive
models and sufficiently strong augmentations. This suggests that the learned models are approximately
capturing a subset of the positive-pair eigenfunctions.

We note that both the linear-kernel-head model and the NeuralEF model exhibit a sharp change
in eigenvalue near the 100th eigenfunction: the first shows a sudden drop to zero, whereas the
second shows strange “jumps” to larger eigenvalues. We believe this corresponds to a failure to
identify additional directions of variation, leading to a lower-rank kernel approximation than expected.
For NeuralEF, this manifests as essentially repeating earlier eigenfunctions instead of finding new
orthogonal directions.

The authors believe that one promising research direction for finding better self-supervised learning
techniques would be to develop more stable or better-conditioned linear approximations of the
positive-pair kernel, building on the spectral contrastive loss or NeuralEF. In particular, we see this
as evidence that the parameterizations we used are not able to form good approximations of the
true minimizer of the respective objectives. We hope that such techniques could be developed by
combining ideas from the kernel methods and self-supervised learning communities, and that they
would lead to useful representations for downstream supervised learning as suggested by our analysis.

F.2 TRAINING DETAILS: OVERLAPPING REGIONS TASK

For each of the models visualized in Figure 6, we use a simple three-layer MLP with hidden layer
sizes [64, 128, 256] which maps from the two-dimensional location of each grid point to the final
kernel-dependent output embedding. We train all methods for 12,000 steps using a batch size of 1024
independently-sampled positive pairs per iteration, using the Adam optimizer (Kingma & Ba, 2014)
with a cosine-decay learning rate schedule.

For the hypersphere kernel head K̂θ(a1, a2) = exp(hθ(a1)
⊤hθ(a2)/τ + b), we include a small

regularization penalty encouraging b to be small, which stabilizes training with the XEnt loss (since
the loss is otherwise independent of b). When using the “XEnt + Logistic” loss mixture, we combine
the two losses using a weight of 0.9 for XEnt and 0.1 for Logistic.

For all methods other than Neural EF, we used batch normalization for the first 6,000 iterations, then
interpolated between the current batch statistics and the average from previous batches for 2,000
more iterations, and finally trained for 4,000 iterations using frozen batch norm statistics alone (e.g.
in “inference” mode), which we found slightly improves eigenfunction quality. For Neural EF, we
keep batch normalization at all steps, and in particular use L2 batch normalization for the output
embedding as proposed by Deng et al. (2022).

To extract eigenfunction estimates from our kernel models, we compute estimates of the eigenfunc-
tions and eigenvalues by performing population kernel PCA over the values of the kernel across
all elements of A, weighted by p(a). For the NeuralEF model, we instead directly use the model’s
outputs as the eigenfunctions, and use running averages of Rii to approximate eigenvalues.

For Figure 6, we compute the alignment between eigenfunctions by taking their squared uncentered
covariance E[fi(a)f̂j(a)]2. Note that by Theorem 3.2 this is equivalent to the square of the coefficient
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ci for the function f̂j expanded in terms of the basis of eigenfunctions fi; consequently we have∑
i E[fi(a)f̂j(a)]2 = E[f̂j(a)2] = 1. Since the specific choice of eigenfunctions is not uniquely

determined when there are multiple eigenfunctions with the same eigenvalue, we sum the alignments
for all eigenfunctions that have the same eigenvalue, leading to the block-diagonal structure shown in
6. We computed the positive-pair discrepancy for each approximate principal component function by
analytically summing over all possible positive pairs.

Population look-up table variant In Figure 4, we use a modified procedure to improve visualiza-
tion quality. Instead of using a MLP, we instead directly learn a lookup table of positions va ∈ R2

and scale modifiers sa ∈ [−5.0, 5.0] for each point a ∈ A, and use a rational quadratic kernel head

K̂θ(a1, a2) = esa1 esa2

(
1− ∥va1

− va2
∥2

2α

)−α
.

where α is a learnable parameter. (The size of each marker in Figure 4 represents the learned scale; we
find that using the scale modifier improves eigenfunction quality, and note that more tightly-clustered
points tend to have slightly smaller scales.)

We train using a full-batch variant of the XEnt and Logistic losses. For the XEnt loss, we compute

LXEnt(θ) = −
∑
a1, a2

p+(a1, a2) log pθ(a2|a1)

where
pθ(a2|a1) ∝ p(a2)K̂θ(a1, a2).

(Here weighting the kernel by p(a2) can be viewed as the population equivalent to sampling a set
of negative pairs as the number of negative pairs approaches infinity.) For the logistic loss, we
analytically compute

LLogistic(θ) = Ep+(a+
1 ,a+

2 )

[
− log σ(log K̂θ(a

+
1 , a

+
2 ))
]
+ Ep(a−

1 )p(a−
2 )

[
− log σ(− log K̂θ(a

−
1 , a

−
2 ))
]

by summing over all possible positive and negative pairs. We use relative weights of 10LXEnt +
1LLogistic.

We use population kernel PCA over the set A to identify the principal component functions. We then
extend the principal component functions fi : A → R across the full embedding space hi : R2 → R
(ignoring the scale parameter for simplicity) according to

hi(v) = K̂θ(v,A)⊤K̂θ(A,A)†fi(A),

where K̂θ(v,A) is the vector

K̂θ(v,A) =



esa1

(
1− ∥v−va1∥

2

2α

)−α
esa2

(
1− ∥v−va2∥

2

2α

)−α
...

e
sa|A|

(
1−

∥v−va|A|∥
2

2α

)−α


,

K̂θ(A,A) is the Gram matrix of the sequence [a1, . . . , a|A|] (in other words, the matrix elements
are defined by [K̂θ(A,A)]ij = K̂θ(ai, aj)), † denotes the Moore-Penrose pseudoinverse, and fi(A)
is the vector [fi(a1) fi(a2) · · · fi(a|A|)]

⊤; this equation implicitly projects each point onto the
appropriate principal component of the kernel. For numerical stability reasons, we regularize the
pseudoinverse K̂θ(A,A)† by additionally removing eigenvalues very close to zero.

F.3 TRAINING DETAILS: MNIST WITH MULTINOMIAL AUGMENTATIONS

Our goal in designing our task was to construct distributions p(Z) and p(A|Z) such that the exact
positive-pair kernel could be computed, and so that the Markov chain would mix between different
unperturbed dataset examples z ∈ Z without changing the label too frequently.

To this end, we constructed our task as follows:
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• Define Z to be a particular subset of the MNIST dataset, and choose p(Z) to be the uniform
distribution over Z . We consider two choices for Z: randomly selecting 512 images from
each of the ten digit classes (used for comparisions between models), and randomly selecting
1024 images from the digits 0, 1, and 2 (used for visualizations of the eigenfunctions).

• For each image, generate 64 pertubed copies, by randomly blurring, translating, and rotating
digits by a small amount. Add a small constant to each pixel so that no pixel has value zero,
then normalize each such copy so that its pixel values sum to 1.

• To generate an augmentation of an image z ∈ Z according to p(A|Z = z), first choose
one of the 64 copies of z, then sample a set of k pixel locations with replacement from the
distribution represented by that copy, where k determines the augmentation strength. This
means we are more likely to sample pixel locations which were within the original digit,
although due to the perturbations described above the pixels may be scattered around the
digit.

Our set A is thus the set of all 28 × 28 images for which all pixels have a nonnegative integer value,
and the total of all pixels is k. (Due to the low pixel density, to improve visibility in our figures
we render each pixel as a box 5x its original size, with shading indicating overlap of these boxes.
However, when giving input to the model, we directly input this sparse pixel reprsentation, without
the 5x multiplier.)

Given a particular augmented example a, we can compute p(a|z) for any z ∈ Z by summing over
each of the 64 copies of z and using the closed-form PDF of a multinomial distribution. We can then
compute p(z|a) by normalizing over all possible z, and use this to exactly compute the positive-pair
kernel feature map ϕ+. We selected the perturbation parameters such that there was nontrivial
uncertainty in z given each a; in other words, we made sure the positive pair Markov chain mixed
well between examples.

F.3.1 MNIST MODEL ARCHITECTURES

For the majority of our experiments, we used three-block variants of a ResNet-18 model followed by
a two 128-dimensional fully-connected layers and a final output layer.

• Linear kernel: We used kernel parameterization K̂θ(a1, a2) = hθ(a1)
⊤hθ(a2) and the

spectral loss, with hθ as the output of the final layer. We set the dimension of the final layer
to 512. We trained this model using the spectral contrastive loss.

• Hypersphere kernel, global scale: We used kernel parameterization exp(hθ(a1)
⊤hθ(a2)/τ+

b), where hθ is computed by normalizing the output of the final layer to lie on the unit
hypersphere, and b is a learned scalar. We set the dimension of the final layer to 32. We
optimized the temperature τ and scale b jointly with the model parameters. For the loss
function, we used a weighted combination of 0.9 times the NT-XEnt loss and 0.1 times the
NT-Logistic loss.

• Hypersphere kernel, individual scale: We used kernel parameterization
exp(hθ(a1)

⊤hθ(a2)/τ + sθ(a1) + sθ(a2)). We set the dimension of the final layer
to 33, and defined hθ by taking the first 32 entries and normalizing them to lie on the unit
hypersphere. We then defined sθ to be 5 × tanh(v33) where v33 is the 33rd entry of the
final layer. We again optimized the temperature τ jointly with the model parameters. The
scale parameter allows the model to adjust the magnitude of the kernel on a per-example
basis, which can be used to scale the eigenvalues of the principal components or to correct
for differences in likelihood between points (since the magnitude of K+ depends on
the marginal likelihood of each point). For the loss function, we again used a weighted
combination of 0.9 times the NT-XEnt loss and 0.1 times the NT-Logistic loss.

• Neural EF model: We set the dimension of the final layer to 512, and used L2 batch
normalization on this final layer to ensure that the L2 norm of each output was 1 (e.g. that
Cj = 1), as described by Deng et al. (2022). We used the modified version of the Neural EF
objective described in Appendix E.2.

We trained our models using the Adam optimizer (Kingma & Ba, 2014) over 50,000 training iterations
and a batch size of 4096 positive pairs per iteration, implemented using the JAX and FLAX libraries
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(Bradbury et al., 2018; Heek et al., 2020). For methods other than Neural EF, we used batch
normalization for the first 35,000 iterations, then interpolated between the current batch statistics and
the average from previous batches for 2,000 more iterations, and finally trained for 13,000 iterations
using frozen batch norm statistics alone (e.g. in “inference” mode); we found that this increased the
quality of the extracted principal components. For Neural EF, we keep batch normalization at all
steps due to the constraint that Cj = 1.

F.3.2 EXTRACTION AND ANALYSIS OF PRINCIPAL COMPONENTS

To estimate the eigenfunctions of the true kernel, we performed PCA using the explicit form ϕ+ of
the positive-pair kernel feature map, where the population covariance was approximated by averaging
over 256 augmentations for each of the images in Z . We then constructed the principal component
projection functions using that covariance. Our alignment plots in Figure 7 for “True kernel” compare
two PCA decompositions using independent random estimates of the population covariance.

For our approximate kernels K̂θ, we first constructed an approximation of the feature map for K̂θ

using the Nyström method (Williams & Seeger, 2000): we sampled a subset S of augmentations by
randomly selecting 25% of Z and sampling one augmentation for each image, computed the Gram
matrix K̂θ(S, S) for that subset, then set

ϕ̂(a) = K̂θ(S, S)
−1/2K̂θ(S, a)

where K̂θ(S, a) is the vector of similarities of a to each reference augmentation in S. The result is a
feature map such that ϕ̂(a1)⊤ϕ̂(a2) ≈ K̂θ(a1, a2). We then again performed PCA using this feature
map, using 256 samples per example in Z to compute the covariance.

For the Neural EF model, we again directly used the model’s outputs as the eigenfunctions, and use
running averages of Rii to approximate eigenvalues. We note that the Neural EF method did not
find a fully orthogonal basis (as indicated by nonzero Rij terms for i ̸= j), and some of its later
eigenfunction estimates were correlated with earlier eigenfunctions; we did not attempt to correct
for this in our plots in Figure 7. We believe this is the cause of the “jumps" from smaller eigenvalue
approximations to larger eigenvalue approximations. (In contrast, the approximate eigenfunctions
from the kernel PCA approaches are by construction uncorrelated over the sampled augmentations,
due to being derived from eigenvectors of the sample covariance.)

We normalized all principal component projection functions to have unit uncentered variance, e.g.
E[fi(a)2] = 1 and E[f̂i(a)2] = 1. As for the overlapping regions task, we then computed alignments
by taking the squared covariance E[fi(a)f̂j(a)]2. We estimated the positive-pair discrepancy for each
principal component function by taking the sample average of

(
fi(a1)− fi(a2)

)2
over 16 randomly

sampled augmentation pairs for each image in Z .

F.3.3 THREE-CLASS MNIST RATIONAL QUADRATIC MODEL

For Figure 1, we additionally trained a ResNet-18 model on only the MNIST digits 0, 1, and 2, using
a scaled two-dimensional rational quadratic kernel:

K̂θ(a1, a2) = sθ(a1)sθ(a2)

(
1− ∥fθ(a1)− fθ(a2)∥2

2α

)−α
. (10)

Here fθ : A → R2 embeds inputs into the plane, sθ : A → R+ is a learned scale function, and α is a
learned shape parameter. We set the output dimension of the ResNet-18 model to 3, and took the
first two elements as fθ; sθ was defined as exp(5× tanh(x)) where z is the third element. We also
parameterize α = exp(γ) and learn the scalar parameter γ. The model has a base hidden dimension
of 128. The model was trained for 50,000 training iterations. We used the cross entropy InfoNCE
loss (as described in Appendix B.1) and the Adam optimizer, with a batch size of 4096 positive pairs
per iteration.
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Classification Regression

# of sampled pixels k = 10 20 50 10 20 50

True Kernel (K+) Kernel PCA 0.564 0.384 0.178 0.722 0.602 0.369

Learned (Linear) Kernel PCA 0.589 0.398 0.254 0.724 0.603 0.362
ResNet Emb. 0.553 0.375 0.229 0.730 0.567 0.459

Learned (Hypersphere, Global Scale) Kernel PCA 0.594 0.401 0.421 0.722 0.559 0.660
ResNet Emb. 0.561 0.371 0.229 0.737 0.602 0.518

Learned (Hypersphere, Local Scale) Kernel PCA 0.583 0.392 0.276 0.718 0.552 0.524
ResNet Emb. 0.575 0.380 0.206 0.742 0.599 0.522

Learned (Neural EF) Learned Eigfns. 0.576 0.398 0.199 0.727 0.561 0.389
ResNet Emb. 0.575 0.389 0.204 0.751 0.593 0.518

Table 2: Classification error (fraction misclassified) and regression error (squared error) on MNIST
task with multinomial augmentations, across augmentation strengths k = 10, k = 20, k = 50.

F.4 DOWNSTREAM SUPERVISED LEARNING ON MNIST

To better understand the performance of the true and approximate eigenfunctions for downstream
supervised learning, we took our multinomial-sampling MNIST task, and compared the quality of
various representations for two downstream prediction tasks: classification with a linear layer, and
linear least-squares regression on the one-hot indicator vectors for each digit class. We considered
three types of representation: the PCA projection functions for K+, the PCA projection functions for
each learned kernel K̂θ, and the intermediate layer embedding vector between the ResNet layers and
the projection head for each model as proposed by Chen et al. (2020a). For each, we fit a regularized
linear predictor on 160 labeled training examples (16 augmented samples from each class), using
160 additional validation examples to tune the regularization strength. For PCA representations,
we additionally tune the representation dimension d, choosing only the first d principal component
functions.

The results are shown in Table 2. Performance is fairly similar across representations, suggesting
that the positive-pair kernel K+ captures much of the variability between augmentation strengths.
Notably, at low augmentation strengths (k = 50), the true eigenfunctions have the smallest error, but
eigenfunction approximations using Kernel PCA do not always outperform the intermediate layer
representations, suggesting that inductive biases may play a role.

In more detail, to generate our supervised training and validation sets, we sampled one augmentation
of 16 random images from each digit class, labeled with the original label, a total of 160 labeled
augmentations in each set. For the test set, we took 170 distinct images from each digit class and
generated one augmentation from each image, without overlap with the training or validation sets, for
a total of 1700 labeled augmentations.

For the classification task, we fit a logistic regression classifier on the training set using SciKit Learn.
For PCA representations, we swept over 40 logarithmically-spaced L2 regularization strengths from
10−4 to 101, and also swept over representation dimension d, taking the first d principal components
for d between 1 and 256. For ResNet embedding representations, we swept over 150 logarithmically-
spaced L2 regularization strengths from 10−4 to 1010; we found that higher regularization strengths
were necessary to attain a good solution. We selected the hyperparameters based on which setting
gave the highest top-1 accuracy on the validation set.

For the regression task, we used a centered version of the one-hot indicator vector, e.g. the target
vector for an example from digit 2 was

[−0.1,−0.1, 0.9,−0.1,−0.1,−0.1,−0.1,−0.1,−0.1,−0.1].

The purpose of this centering was to ensure that the expected value of the label vector was the zero
vector. We then fit a predictor using ridge regression (L2-regularized least-squares regression) in
Numpy. As for the classification task, for PCA representations we swept over 40 logarithmically-
spaced L2 regularization strengths from 10−4 to 101 and over each representation dimension d
between 1 and 256, and for ResNet embedding representations we swept over 150 L2 regularization
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ResNet (SimCLR v2) model on ImageNet 2012

Figure 8: Relationship between kernel PCA eigenvalue and positive-pair discrepancy for a norm-
constrained linear kernel head and the spectral contrastive loss, across two datasets. Relationship
predicted by Equation 4 is shown with a dashed line. Eigenvalues smaller than 10−6 are omitted.

strengths from 10−4 to 1010. We selected the hyperparameters based on which setting gave the lowest
squared error on the validation set.

F.5 PRINCIPAL COMPONENTS ANALYSIS OF SPECTRAL-LOSS LINEAR-KERNEL MODEL ON
IMAGENET

In this section, we discuss some preliminary results from applying our Kernel PCA analysis to a
real-world contrastive learning model.

We started by training a variant of the SimCLR v2 model Chen et al. (2020b) using the spectral
contrastive loss and a linear kernel head, normalizing the output layer to have a constrained norm
∥hθ(a)∥2 = c as described by HaoChen et al. (2021). We explored automatically learning this norm
c using the Adam optimizer and a separately-tuned learning rate. We found that the norm c reliably
increased during training, but training tended to destabilize and produce NaN weights once c ≈ 90,
and we were unable to successfully train a model with a higher output layer norm.

We trained a model for 100 epochs (≈ 30,000 iterations) on the ImageNet 2012 dataset, using the
default augmentation parameters and other hyperparameters for SimCLR v2, obtaining a similar
supervised classification accuracy to previous results by HaoChen et al. (2021).

Next, we performed kernel PCA by using ordinary PCA with the explicit form of the kernel features
(the output layer with normalization applied), since kernel PCA and ordinary PCA are equivalent for
a linear kernel parameterization. We computed the covariance over a sample of 16 augmentations
of each training dataset example, averaged across all examples. We then constructed the princi-
pal component functions f̂i by normalizing based on the eigenvalues, and computed positive-pair
discrepancies for each function over a sample of 8 augmentation pairs for each training dataset
example.

Figure 8 shows the results of comparing the eigenvalues and positive-pair discrepancies, relative to
the predicted relationship from Equation 4. For comparison, we also reproduce the corresponding
figure for this kernel head parameterization and loss function on our overlapping regions task. We
see that, across both tasks, the norm constraint causes estimated eigenvalues to be smaller than
Equation 4 would predict, but there still appears to be an inverse correlation between the eigenvalue
and positive-pair discrepancy. (On the overlapping regions task, it is close to a constant shift of the
linear Equation 4 relationship. On the ImageNet task, the relationship is still somewhat linear, but
with multiple irregularities, and a somewhat different slope than Equation 4 predicts; some of this
may be due to increasing in the norm constraint during training.)

We also observe that, in both tasks, the sum of the eigenvalues from Kernel PCA is exactly equal to
the norm constraint c. This suggests that the norm constraint is “capping” the sum of the eigenvalues,
forcing the model to only learn a subset of eigenfunctions despite having capacity for more. We
conjecture that stabilizing the learning dynamics might enable us to remove the norm constraint c
and thus capture additional eigenfunctions, leading to potentially superior representations for future
self-supervised methods.

39


	Introduction
	Contrastive Learning Is Secretly Kernel Learning
	Kernel Principal Components Are Markov Chain Eigenfunctions
	Summarizing K+ With Kernel Principal Components Analysis
	Decomposing Invariance With The Positive-Pair Markov Chain
	Kernel PCA Recovers The Basis of Positive-Pair Eigenfunctions

	Eigenfunction Representations Are Minimax Optimal
	Related Work
	Experiments
	Discussion
	Justification of Assumption 1.1
	Existing objectives are minimized by the positive-pair kernel
	NT-XEnt and the InfoNCE objective
	Logistic losses and NT-Logistic
	The Spectral Contrastive Loss
	Other Related Objectives And Connections to the Positive-Pair Kernel

	Relationship between positive-pair kernel and Markov chain eigenfunctions
	Notation
	Proof of Correspondence Between Kernel PCA And Markov Chain Eigenfunctions
	Relationship to the eigenvectors of the symmetrized adjacency matrix
	Recovering proportionality constants

	Generalization properties of the eigenfunction representation
	Min-max optimality of eigenfunctions
	Generalization bound for linear prediction with the eigenfunction representation

	Eigenfunction estimation techniques
	Combining Contrastive Learning With Kernel PCA
	Direct Eigenfunction Extraction, And Connections to VICReg

	Experiment Details
	Additional Eigenfunction Estimation Results
	Training Details: Overlapping Regions Task
	Training Details: MNIST with Multinomial Augmentations
	Downstream Supervised Learning On MNIST
	Principal Components Analysis of Spectral-Loss Linear-Kernel Model on ImageNet


